I like how more and more people are adopting 3b1b's style. Makes the content much better and easier to understand. This slowly converts a lot of the more complicated topics into easy-to-digest modules.
@Artaxerxes.3 жыл бұрын
It literally uses manim
@platypusfeathers2 жыл бұрын
3B1B’s creator Grant Sanderson created an animation library for himself to use to make videos. People forked that library (made a copy of it) and now there is a community supported version of it for creators, while he continues to use his own ( as well as the community one). Pretty cool stuff!
@atotoole21 Жыл бұрын
@@Artaxerxes. Nice! I didn't know about manim or that 3B1B's animation technic was python based. I assumed it was done by hand using Illustrator or something.
@umbraemilitos Жыл бұрын
Yes, though I don't think 3B1B wants their videos to be a template to copy. I think he's happy to inspire, but doesn't think that his Manim program is the right tool for most cases. He released a video explaining the SOME criteria, and it allows for lots of creative expression in teaching.
@andreypopov61668 ай бұрын
3b1b or any other style on its own doesn't mean that the content is easier to understand.
@raminbohlouli1969 Жыл бұрын
I knew basically 0 about AD and didn't know where to start since all the articles, websites ,books etc that I have looked into, explained everything in a really comlicated way. I would like to thank you immensly for this very informative yet simple video! Now I know enough to dive deeper into the concept. This video was all I needed. Keep up the great work! You got yourself a new follower.
@DaveJ65153 ай бұрын
Automatic Differentiation, both forward and backward, plus mixed mode and the Hessian example at the end, all in less than 15 minutes, and totally clear. Great content.
@arnold-pdev3 жыл бұрын
Went from complete ignorance to understanding in 15 min. Thank you!
@arkasaha44124 жыл бұрын
Man this is pure gold. We all use this stuff but hardly have a clear idea about it's nitty-gritties. Thanks for thre awesome content and presentation, keep it up! :)
@andrewbeatty59124 жыл бұрын
Best summary I've ever seen !
@stathius2 жыл бұрын
Class act, being concise and clear at the same time is no easy feat. Thank you.
@tom-sz7 ай бұрын
Great video! Where can I learn more about the rounding and truncation errors plot at 2:06? I need to make an analysis of these errors for a project. Thanks :)
@jorgeanicama8625 Жыл бұрын
One more note ARI. I think there is a small typo. From minute 7:36 until 7:46 the derivative of V6 should be a "+" instead of a "-".
@chandank52664 жыл бұрын
Your way of explanation is outstanding.....love from india sir♥️
@TheLokiGT2 жыл бұрын
Very good job. One of the very few good videos I've seen around about autodiff.
@esaliya3 жыл бұрын
This is a neat summary that's hard to find in a single place!
@sirallen25912 жыл бұрын
Thanks!
@jorgeanicama8625 Жыл бұрын
Thank you Ari. I used symbolic computation in the past but this novel way of calculating derivatives is quite interesting. Learnt lots by watching your video. For sure, I will follow up with the recommended literature
@jaf79792 жыл бұрын
Well done, superbly explained in context of other differentiation methods. Exactly what I needed!
@aronferencz1720Ай бұрын
At 6:37, when you show the calculations of the primals and the tangents shouldn't the last derivative v'_6 be equal to v'_5*v_4 + v_5*v'_4, rather than v'_5*v_4 - v_5*v'_4 by the product rule for differentiation?
@koushik7604 Жыл бұрын
This is highly motivated by Andrej Karpathy's lecture, but very clear explanation. It is indeed a good addition to my resource list.
@ram-my6fl4 ай бұрын
did andrej karpathy use same graphs or images ?
@stansilverman19014 жыл бұрын
In order to explain this to my wife, I differentiated voter rights-the analog process humans decide who should be allowed to vote, someone who looks like me, or everyone?. I think she got it. Brilliant Ari
@abhishek.shenoy3 жыл бұрын
This is so well explained! I love the quality of your videos!
@VHenrik0077 ай бұрын
Just as a note for anyone wondering, the arxiv link doesn't work because it includes the closing parenthesis. Otherwise great video!
@SohailKhan-zb5td2 жыл бұрын
Thanks a lot. This kind of videos are really a lot of hardwork to produce. Thanks a lot
@PahenPWNZ3 жыл бұрын
Awesome explanation, thanks! But I still have one question, can someone explain please, at 12:05, right column (Adjoints) I don't understand how did we get these values (f. e. v bar 5 = v4 * v bar 6, etc...) From where did these values come from? If we use the formula at the previous slide with sum of children nodes, I get different values..
@MarkKrebs3 жыл бұрын
Hi I have same Q. The moment when adjoints are defined is a break to me. vbar5 = v4 * vbar6 seems "backwards." I see it matches the formula given on the prior graph page, but not the intuition for it. "The sum of the output values, weighted by my leverage in creating them," is as close as I can get.
@abhaysolanki92843 жыл бұрын
I know when he said children I automatically thought of v3 and v4. But instead the children in the case v5 is only v6. And children for v4 are v5 and v6. Children are the nodes that the node is pointing to.
@paulpassek61184 жыл бұрын
Thanks for the superb video. I think you made a little mistake in the forward mode example at 6:24. Shouldn't it be v̇_6 = v̇_5*v_4 + v̇_4*v5 ?
@ariseffai3 жыл бұрын
Thanks Paul, good catch-placed this under errata.
@BrianAmedee4 жыл бұрын
Excellent presentation mate. That was an awesome explanation and a nice trip down memory lane (university days).
@KulvinderSingh-pm7cr Жыл бұрын
This is exceptionally well explained.
@KulvinderSingh-pm7cr Жыл бұрын
And thanks a lot for references too, they're very useful.
@amadlover Жыл бұрын
timely information about source code manipulation and google tangent. It was a kind of confirmation for me that it was indeed possible. I started to learn meta programming hoping to generate code for the differentials, based on the function, without actually knowing if it was possible., basically a shot in the dark. cheers
@jkkang96664 жыл бұрын
Thanks for the great summary and the nice video.
@UnnamedThe4 жыл бұрын
12:26 May I ask where you got that c
@ariseffai3 жыл бұрын
Baydin (arxiv.org/abs/1502.05767) references this bound in Sec. 3.2. I don't have the exact location for it in Griewank and Walther.
@UnnamedThe3 жыл бұрын
@@ariseffai Thank you a lot! That is already very helpful.
@ccgarciab4 жыл бұрын
Looking forward to your future videos
@ΔημητρηςΚατσικης-π9η3 жыл бұрын
Thanks you so much. This video really helps me to understand a little more what is automatic differentiation is.
@Abhinavneelam6 ай бұрын
one thing i don't understand is why can't forward pass do it for multiple input variables? is there a limitation im unaware of?
@datamike74574 жыл бұрын
Ari, this is great content! I used to call symbolic differentiation 'analytical'. It is obnoxious to track all of the coefficients.
@halneufmille3 жыл бұрын
Thanks! I never understood this before, but it became obvious in one second.
@Roshan-xd5tl2 жыл бұрын
Brilliant video, Ari. Thank you!
@AJ-et3vf3 жыл бұрын
Awesome presentation! I understand autodiff a little bit more. I'll rewatch several more times in the future to understand it better till I completely understand it :)
@aldaszarnauskas27 Жыл бұрын
Great video, well presented, clearly explained, nice visualisation... Thank you!
@ktugee Жыл бұрын
slight type : @6.29 : v6' = v5'v4 + v4'v5. ( there should a + instead of - )
@ぶらえんぴん Жыл бұрын
I like your tutorial video because it is short and good
@dullyvampir83 Жыл бұрын
Great video, thank you! Just a question, you said a main problem with symbolic differentiation is that no control flow operations can be part of the function. Is that in any way different for Automatic differentiation?
@weinansun93214 жыл бұрын
more videos please, this is amazing!
@thivinanandh44303 жыл бұрын
Awesome Explanation..!!!!! Keep rocking..!!!
@asdf567902 жыл бұрын
Exactly what I was looking for! Thank you :)
@pandatory11084 жыл бұрын
Excellent video Ari. Thanks for such a great explanation! Also, your animations were really well done. I suspected you might be using manim based on the style and then I read the description :)
@GordonWade-kw2gj8 ай бұрын
Wonderful video. The detailed example helps tremendously. And I think there's an error: At t=6.24, sInce $v_6 = v_5\times v_4$, in $\dot{v}_6$ shouldn't there be a plus sign where you've got a minus sign?
@pulusound4 жыл бұрын
very well explained video with lovely calm background music. i need to brush up on my vector calculus and come back but this gave me a good intuition. hope you make more of these!
@prydt3 жыл бұрын
Amazing explanation of Autograd and wonderful visualizations!!! Thank you so much.
@YorkiePP4 жыл бұрын
Fantastic video on autodiff, really cleared up a lot of things I wasn't sure about.
@nathanielscreativecollecti63923 жыл бұрын
Bravo! I have a final today and now I get it!
@newbie8051 Жыл бұрын
Beautiful video but I lost track quite a few times, is there any pre-requisite topics/stuff I should know before trying to understand this
@garlictoastreviews4 ай бұрын
Is it a typo when you first show the primals and tangent values, v_6 tangent should be the sum of the v_5*v_4 and v_5v_4*? Thus using the product rule?
@advitranawade30396 ай бұрын
For an ML application, why is it that O(ops(f)) time for automatic diff is considered a faster runtime than O(n) for numerical diff - it seems to me as though the # inputs should be a lower bound for how many operations there are between those inputs .... if this is the case then why use automatic diff at all for ML?
@andersgadlauridsen1533 Жыл бұрын
So is so great content, please keep making more :)
@jishnuak30002 жыл бұрын
Very intuitive explanation, thanks
@garlictoastreviews4 ай бұрын
Is the reason that we know the tangents of v_-1 and v_0 is because we are taking the partial with respect to x_1?
@juandavidnavarro Жыл бұрын
Excellent video!! thank you so much. I have a question: is there any AD reverse mode based on dual numbers?
@chnlior3 жыл бұрын
Great summary, Ari. Thank you. I think there is small error in 6:23. v6' = v5'v4 + v4'v5 and not "-".
@ariseffai3 жыл бұрын
Thanks Lior, good catch-placed this under errata.
@proweiqi4 жыл бұрын
this is very good. but some of the stuff moves too fast and not explaining things like the primal part clearly enough
@alfcnz9 ай бұрын
@Ari, this is really great! 🤩🤩🤩
@ariseffai9 ай бұрын
Thanks Alfredo!
@manumerous3 жыл бұрын
This video is genius! love it.
@bryanbischof43514 жыл бұрын
This is quite good. I’m wondering if a part 2 digging deeper yet into how the implementation takes advantage of the concept you introduce here would be possible?
@ariseffai4 жыл бұрын
Thanks Bryan. That's a possibility. It would certainly be interesting to dig deeper into the implementation schemes, which were only briefly described here. In the meantime, check out some of the links for further information on implementations.
@deepanshuchoudhary45984 жыл бұрын
Please reply to my Question. Where do you learn these and how are you able to grasp them completely, I'm a data science student and i need to know it badly. Pls share insights.
@ariseffai3 жыл бұрын
I found the survey by Baydin et al. to be particularly helpful. See the description for links!
@garlictoastreviews4 ай бұрын
Could anybody explain why v bar 6 is equal to 1 conceptually?
@amirrezarezayan81217 ай бұрын
great great great , Thanks a million 😃
@vijaymaraviya94434 жыл бұрын
Awesome summary👌
@sandropollastrini27073 жыл бұрын
Beautiful and clear!
@홍성의-i2y Жыл бұрын
어쨌든 요점은, 모든 것을 다 closed form으로 저장해서 gradient를 매번 구하는 게 아니라는 점이다. 한 번 계산할 때마다, output value와 더불어 gradient value도 함께 계산해두어, 나중에 forward / backward 할 때 사용한다.
@superagucova3 жыл бұрын
Loved this video! Are you using 3b1b's Manim?
@ariseffai3 жыл бұрын
Yep! Manim is awesome
@SuperDonalByrne11 ай бұрын
Great video!
@gabrielmccartney79752 жыл бұрын
Hello! Can we use dual numbers for integration?
@diodin85872 жыл бұрын
not mention *dual number*?
@setsunakevin68614 жыл бұрын
Amazing video! Very well explained.
@rachelellis66552 жыл бұрын
Derivative at 0:43 would actually be: f' (x) = (2x)e^(2x-1)- 3x^2 ... would it not? Great video.. I've subscribed! I'm just learning derivative and chain rule so I want to be sure I'm understanding the concept/rules/procedures correctly. I'm probably wrong though, that's why I'm asking for verification... thanks!
@kong13973 жыл бұрын
Wow, that's great explanation.
@Vaporizer414 жыл бұрын
Great video!, I love your content, hope you will keep making many more :)
@M3rtyville6 ай бұрын
Reverse-on-Forward sounds like ACA.
@tom_verlaine_again3 жыл бұрын
Great lesson! Thank you.
@hadik44974 жыл бұрын
Thanks! This is phenomenal!
@bokibogi2 жыл бұрын
4:27 automatic differentiation ...
@jianwang74332 жыл бұрын
thanks for sharing
@Rems7662 жыл бұрын
chain rule rules
@bitahasheminezhad28874 жыл бұрын
That was awesome, thank you
@sofa333 жыл бұрын
Thank you so much!
@pietheijn-vo1gtАй бұрын
I like the video but it goes much too fast for me to really learn the concept. I need a book on AD
@rtcoffee12353 жыл бұрын
thanks for this!
@softerseltzer4 жыл бұрын
Love it!
@germangonzalez30634 жыл бұрын
Very useful
@a.osethkin553 жыл бұрын
Thanks!!!
@98886224003 жыл бұрын
thanks bro!
@zappist751 Жыл бұрын
THANK YOU LORD THANK YOU JESUS AND THANK YOU SIR
@심재훈-q7g3 жыл бұрын
Do you get paid to make such videos? Definitely should
@yavarjn20552 жыл бұрын
Wooow
@sarvasvarora3 жыл бұрын
Reddit gang?
@Manishsingh-dl6ho4 жыл бұрын
Fking Great!!!
@maxyazhbin8263 жыл бұрын
please no music, fantastic otherwise
@MariaFernandez-pv9hn4 жыл бұрын
You should point on the screen what you are talking about when doing examples.
@ollllj Жыл бұрын
on expression-swell: one of my proudest computations (and hard to debug code) is the automated differentiation 3rd derivative of the general quotient rule within [shadertoy ... /WdGfRw ReTrAdUi39] , with identical parts already pre-multiplied out by how much it is constantly repeated. webgl code: Struct d000{float a;float b;float c;float d;};//1 domains t,dt,dt²,dt³ , sure, this could just be a vec4, but i REALLY needed my custom labels for debugging. d000 di(d000 a,d000 b){return d000( //autodiff up to 3 derivatives for division , up to 3 iterations of; quotient rule within chain rule) a.a/b.a //0th derivative, simple division ,(a.b*b.a-a.a*b.b)/(b.a*b.a) //dx first derivative ,((a.c*b.a+a.b*b.b-a.b*b.b-a.a*b.c)*(b.a*b.a)-2.*(a.b*b.a-a.a*b.b)*(b.a*b.b))/(b.a*b.a*b.a*b.a) //dxdx second derivative ,((((a.d*b.a+a.c*b.b+a.c*b.b+a.b*b.c-a.c*b.b-a.b*b.c-a.b*b.c-a.a*b.d)*(b.a*b.a) +(a.c*b.a+a.b*b.b-a.b*b.b-a.a*b.c)*(b.b*b.a*b.a*b.b)) +(-2.*(a.c*b.a+a.b*b.b-a.b*b.b-a.a*b.c)*(b.a*b.b) +(a.b*b.a-a.a*b.b)*(b.b*b.b+b.a*b.c)))*(b.a*b.a*b.a*b.a) -((a.c*b.a+a.b*b.b-a.b*b.b-a.a*b.c)*(b.a*b.a) -2.*(a.b*b.a-a.a*b.b)*(b.a*b.b)) *4.*(b.b*b.a*b.a*b.a))/(b.a*b.a*b.a*b.a*b.a*b.a*b.a*b.a)) //dxdxdx //3rd derivative quotient rule sure is something ;}