Beautiful Geometry behind Geometric Series (8 dissection visual proofs without words)

  Рет қаралды 133,198

Mathematical Visual Proofs

Mathematical Visual Proofs

Күн бұрын

Пікірлер: 331
@Psychospheres
@Psychospheres Жыл бұрын
I never really liked math as a teen and I'm just now starting my journey into mathematics and things like this make me really appreciate beauty in it. Excellent job.
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thanks! Glad you liked this. And glad to hear you’re back to math!
@pauldokter2725
@pauldokter2725 Жыл бұрын
Oh, sweet. Gave me chills. Makes me wish I were a kid again starting out fresh on math explorations. Thank you.
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thanks for checking it out. Glad you liked it!
@marca.f.3569
@marca.f.3569 Жыл бұрын
just came to say the same, I really miss the evenings where I went to the internet and started reading maths texts, first divulgation ones, then more complex (but still in the divulgation/not really formal field) and finally more formal ones (which i didn’t fully understand until i went to university). I like to think that math is like art, first the mathmatician fights to find the proof, then the rest of us admire the piece and finally we get to understand it. Still amazes me how even after that many years learning math it stills shows me there is more beauty hidden out there
@sleha4106
@sleha4106 Жыл бұрын
If math is an art, you are no less than Vinc. These were so peaceful, elegant and true pieces of beauty
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Glad you liked it!
@tomdekler9280
@tomdekler9280 Жыл бұрын
Never call van Gogh that again.
@Devo491
@Devo491 Жыл бұрын
@@tomdekler9280 'Ear, 'ear!
@pritamyadav17
@pritamyadav17 Жыл бұрын
@@MathVisualProofs please upload more and more...
@MathVisualProofs
@MathVisualProofs Жыл бұрын
@@pritamyadav17 I am doing my best. I do have about 200+ videos already up if you want to check the back catalog (but the older ones were when I was first learning so they could be updated perhaps).
@kornelviktor6985
@kornelviktor6985 Жыл бұрын
By far the most beautiful and relaxing video on youtube thanks :)
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thanks!
@Smashachu
@Smashachu 4 ай бұрын
The reason why i've always struggled with math is because i'm a very visual person.I feel like the difference between just knowing how to do math and knowing how math works and why things are the way they are adds a whole depth to the subject that is never taught in schools. A depth that allows you to understand the world around you better. Once you can look at a circle and fully understand what pi is, then you will never look at a circle the same way again. You will constantly have that teaching reinforced because it enhanced your understanding of the world. Which is why we invented math in the first place.
@S.G.Wallner
@S.G.Wallner Жыл бұрын
The 1/9 breakdown was so clever.
@corentinz6657
@corentinz6657 Жыл бұрын
is this a patern ? like sum (1 -> infinity) 1/k^i = 1/(k-1) ?
@MathVisualProofs
@MathVisualProofs Жыл бұрын
For sure it is! Notice that the dissections for k=6 and k=7 can be generalized for any integer k. You can also prove the formula you have in a variety of ways for any k>1.
@corentinz6657
@corentinz6657 Жыл бұрын
@@MathVisualProofs i will try to prove it just to see if it's that difficult or not. But thx for all your content !
@MathVisualProofs
@MathVisualProofs Жыл бұрын
@@corentinz6657 The key to the proof is to think about partial sums, S_n = sum (1-> n) 1/k^i. Think about how this sum is related to (1/k)*S_n...
@Goaw2551
@Goaw2551 Жыл бұрын
​@@MathVisualProofs it also work with k=1 too right? 1/1+1/1²+1/1³+...+1/1^n approaches inf, 1/0 also approaches inf
@milanvasic1931
@milanvasic1931 Жыл бұрын
@@Goaw25511/0 does not approach anything. The limit of s to 0 for 1/s approaches infinity from above. From below for example it approaches negative infinity. If you take s=((-1)^n)/n you can take the limit of n to infinity and see that it doesnt converge at all. Thus we mathematicians dont like to talk about 1/0
@yuddhveermahindrakar6864
@yuddhveermahindrakar6864 Жыл бұрын
विविध भौमितिक आकृत्या,त्यांचे अनंत विभाग करून त्यांची बेरीज ,प्रात्यक्षिकासह दर्शवल्यामुळे अनेक घटकांची माहिती मिळाली, यामुळे विविध कल्पना सुचतात, भूमिती मध्ये लपलेल्या सौंदर्याच दर्शन घडले धन्यवाद सर
@MathVisualProofs
@MathVisualProofs Жыл бұрын
👍
@louigomes154
@louigomes154 Жыл бұрын
I have seen the majority of them on olympics or challenges, and i finally discovering that it has some logix behind, the point that it isn't just uses to be in a random question, but the beauty of geometry.
@MathVisualProofs
@MathVisualProofs Жыл бұрын
:)
@sciencetechnician8787
@sciencetechnician8787 Жыл бұрын
Amazing geometrical proof on GP, I am really happy that I had learnt something new..
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Glad it was helpful!
@user-ikono
@user-ikono Жыл бұрын
数式の導出自体は高校数学でもできてしまいますけど、こういう風に図にして視覚的に捉えられるというのは面白いし勉強になりますね。ありがとうございます。
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Yes! It’s fun to have both algebraic and geometric explanations.
@ChannelDefault
@ChannelDefault Жыл бұрын
Your channel is underrated. This is really beautiful and artistic.
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thanks! I appreciate the comment 👍😀
@vyacc.friend3798
@vyacc.friend3798 Жыл бұрын
OMG, it is so beautiful! I have learned something about applied math in art and also some number mathematics! Thank you!
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Glad it was helpful!
@lapis.lareza
@lapis.lareza Жыл бұрын
Thank you, thank you very much for the beautiful works !
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thanks for checking it out.
@theoriginaldrpizza
@theoriginaldrpizza Жыл бұрын
Awesome job putting this together! I had never seen many of those before.
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thanks! Check the playlist in the description for more too :)
@KaliFissure
@KaliFissure Жыл бұрын
I had no idea you had then all in one place. How beautiful and perfect that the infinite sum is the previous fraction. It can't help but be such and yet still.....❤
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thanks! I made them one at a time, but then I tried making a compilation video here (and I turned them into shorts). The compilation video did better than all my other long-form videos, so maybe I'll have to create more compilations.... Appreciate you watching them and commenting!
@KaliFissure
@KaliFissure Жыл бұрын
@MathVisualProofs I'm trying to model a generalization of this in my head. There should be one as the descending series of triangles in a curl.....
@TRZG246
@TRZG246 Жыл бұрын
Please don't stop making these videos they are helpful
@MathVisualProofs
@MathVisualProofs Жыл бұрын
I'll try! :)
@TRZG246
@TRZG246 Жыл бұрын
@@MathVisualProofs thanks
@78Mathius
@78Mathius Жыл бұрын
I love the concept of algorithmic art and math as art. This is wonderful.
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thanks!
@kmjohnny
@kmjohnny 9 ай бұрын
I'm so glad I found this channel.
@MathVisualProofs
@MathVisualProofs 9 ай бұрын
Glad you're here!
@slrawana
@slrawana 9 ай бұрын
No Words. Excellent Work.
@MathVisualProofs
@MathVisualProofs 9 ай бұрын
Wow, thank you! I appreciate your comment :)
@nonymousCode
@nonymousCode Жыл бұрын
Such a nice way to present the mathematical expression.. Awesome experience with ur background music🎶 nice choice of background music..
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thank you so much 🙂
@algorithminc.8850
@algorithminc.8850 Жыл бұрын
Fun channel. Thanks. Cheers.
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Glad you enjoy it!
@chunkiatlim406
@chunkiatlim406 Жыл бұрын
wow, this is such an enjoyable video to watch
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Oh excellent! I really like these dissections and put many up individually but I hoped people might also like to see a themed compilation. Thanks!
@Scrolte6174
@Scrolte6174 Жыл бұрын
Great videos!
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thanks!
@Scrolte6174
@Scrolte6174 Жыл бұрын
How welcome😁
@-ZH
@-ZH Жыл бұрын
5:00 Just realised this proof can be used for any of the sums, as long as you find a way to evenly divide the area of the triangle.
@-ZH
@-ZH Жыл бұрын
I suppose that also applies to the 3:05 method
@-ZH
@-ZH Жыл бұрын
Just realised the 2:13 proof is just a fancy way of drawing the 3:05 proof.
@DoxxTheMathGeek
@DoxxTheMathGeek Жыл бұрын
With math you can create really nice looking things like fractals, geometric series, etc. I still can't understand how most people don't like math.
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Agree!
@hydrogenbond7303
@hydrogenbond7303 Жыл бұрын
This is really beautiful.
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thanks!
@renesperb
@renesperb Жыл бұрын
Beautiful illustration!
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thank you so much 😀
@natanytzhaki8665
@natanytzhaki8665 Жыл бұрын
(1/k)^i for i:0 => infinity and k integer grater then 1 is 1/(1 - 1/k) which is k/(k-1). Now we can subtract fisrt item which is 1/k^0=1 and we get k/(k-1) - 1 = 1/(k-1)
@MathVisualProofs
@MathVisualProofs Жыл бұрын
sounds about right :)
@AxelinickRapGirl
@AxelinickRapGirl Жыл бұрын
Thank you, that was beautiful beyond words
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Glad you enjoyed it!
@keinKlarname
@keinKlarname Жыл бұрын
Indeed: beautiful! Thanks a lot for this.
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thank you too!
@hontema
@hontema Жыл бұрын
for the circle one, cant you prove the same thing with the hexagon one previously? can't you split it into an infinitely large number of segments and prove infinitely many geometric series?
@MathVisualProofs
@MathVisualProofs Жыл бұрын
For sure. Both n=6 and n=7 in this video can be generalized to any geometric series of the form 1/n where n is a positive integer. I even have another old video showing how you can use the circle idea (and so the polygon idea) to get some different series: kzbin.info/www/bejne/mKm2dH2Ia7eFrtU
@nonameee0729
@nonameee0729 Жыл бұрын
I think actually from (1/3)^i you can do all proofs on circle and perhaps there is general solution for 1/n+(1/n)²+(1/n)³+...=1/(n-1) I think so cuz you cut inside circle smaller one so that you can cut a bigger piece into n-1 parts and n-th part is circle where you repeat process for eg if you have series with 1/4^i you make 3 pieces on circle and there must be a smaller circle so that small circle is equal to each of one pieces from bigger one co you taking 1/4 of circle and going into small one and repeat process
@MathVisualProofs
@MathVisualProofs Жыл бұрын
@@nonameee0729 for sure! You can even use the circle for sums of 1/2, but it's a bit strange because you get an inner circle of 1/2 area and an annulus of 1/2 area... so the annuli just shrink in at various powers of 1/2.
@pizzarickk333
@pizzarickk333 Жыл бұрын
Surprised I could understand all of it. Thanks for the video
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Glad to hear that!
@ruilopes00
@ruilopes00 Жыл бұрын
Beautiful video for a fascinating concept. I "sense" this has a deep meaning in our universe. I know their inversed, but it's like a sum of powers of an integer originates the next integer. Or maybe I'm just crazy. Probably the latter.
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Glad you enjoyed it!
@SocratesAlexander
@SocratesAlexander Жыл бұрын
4:05 I think this circle method can be used to prove the general situation since any circle can be dissected such that there are r-1 sections surrounding a central circle. So this is the general proof that the sum of any geometric sequence of Σ(1/r)^n is equal to 1/(r+1).
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Both circle and polygon methods generalize. But the result is 1/(r-1)
@dylanparker130
@dylanparker130 Жыл бұрын
Beautiful video!
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thank you very much!
@utsavmitra
@utsavmitra Жыл бұрын
you are wonderful, i think you are that kind of person who imaging number not only number but what it's acutely number is very beautiful work
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thank you!
@rohitsk6068
@rohitsk6068 Жыл бұрын
Great work .
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thank you!
@eduardzakharian9274
@eduardzakharian9274 Жыл бұрын
Thank you very much!)
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Welcome!!
@vishalramadoss668
@vishalramadoss668 Жыл бұрын
This was amazing. Geometry forever
@prarthananeema9774
@prarthananeema9774 Жыл бұрын
Thank you God for recommending this 🙏❣️
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Glad you liked it!
@aleksanderorzechowski5580
@aleksanderorzechowski5580 Жыл бұрын
This is beautiful 😮
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thanks!
@ludmilavokareva719
@ludmilavokareva719 Жыл бұрын
Математика завораживающее зрелище! Спасибо!👍🏻👏👏👏
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thanks for checking it out!
@noble2834
@noble2834 6 ай бұрын
Wow, please keep it up
@MathVisualProofs
@MathVisualProofs 6 ай бұрын
Doing what I can. Thanks!
@anadiacostadeoliveira4
@anadiacostadeoliveira4 6 ай бұрын
Really like fractals! 😊
@mangus8759
@mangus8759 Жыл бұрын
Something you will discover, by using the same method as the proof at 3:04, the proof goes like this: For any number 'n' from 2 to infinity, the infinite sum of 1/n^i, where i = 1 to infinity, is equal to 1/(n-1). If n=1 then the resulting infinite sum is infinity. The geometric proof works for all whole numbers greater that or equal to 4 but breaks down lower than that. There is probably a way to use different geometric proofs for n=[1, 4) but I don't know them off the top of my head. Edit: The infinite sum of 1/3^i can be visually proven by using the approach at 3:51
@MathVisualProofs
@MathVisualProofs Жыл бұрын
I have a couple general approaches for any ratio between -1 and 1 on my channel too.
@Irenecometa
@Irenecometa Жыл бұрын
Beautiful
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thanks!
@antoniocampos9721
@antoniocampos9721 Жыл бұрын
This is absolutely wonderfull....for the ones who love math...
@MathVisualProofs
@MathVisualProofs Жыл бұрын
I hope that includes you :)
@antoniocampos9721
@antoniocampos9721 Жыл бұрын
Of course I'm included...
@MathVisualProofs
@MathVisualProofs Жыл бұрын
@@antoniocampos9721 👍😀
@Zangoose_
@Zangoose_ Жыл бұрын
Math Degree here. This makes me feel like "All that challenging work don't seem so hard no more."
@MathVisualProofs
@MathVisualProofs Жыл бұрын
👍😀
@Bolocomcafe
@Bolocomcafe Ай бұрын
Essential series.
@Unknown-kc8xz
@Unknown-kc8xz Жыл бұрын
I have developed a proof of sum upto infinite powers of 1/2 which includes bisection of angles by extending the hypotenuse further into a base forming an infinite length base
@calicoesblue4703
@calicoesblue4703 Жыл бұрын
What specifically is this song called? It’s very relaxing & beautiful.
@MathVisualProofs
@MathVisualProofs Жыл бұрын
It’s linked in the description - check it out!
@l.v.6715
@l.v.6715 Жыл бұрын
Wonderful!!!!
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Glad you like it!
@ccona2020
@ccona2020 Жыл бұрын
Maravilloso. Muchas gracias.
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thanks for checking it out!
@aeoliaxd
@aeoliaxd Жыл бұрын
Idk if it's just a coincidence, but: The infinite sum of (1/n)^x, and for each sum x increases +1, equals 1/(n-1). This could be just a short and finite pattern, but it could be an infinite pattern too... So... Idk...
@MathVisualProofs
@MathVisualProofs Жыл бұрын
:)
@bizon1271
@bizon1271 Жыл бұрын
This amazong work. May God bless you and your loved ones!
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thank you so much!
@johnchessant3012
@johnchessant3012 Жыл бұрын
very neat!
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thanks!
@DidarOrazaly
@DidarOrazaly Жыл бұрын
Amazing geometry
@williamribeiro4622
@williamribeiro4622 5 ай бұрын
beautiful
@MathVisualProofs
@MathVisualProofs 5 ай бұрын
Thank you! 😊
@바나나는최고의과일
@바나나는최고의과일 Жыл бұрын
so beautiful video
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thanks!
@benjaminbertincourt5259
@benjaminbertincourt5259 Жыл бұрын
Artistically, I can appreciate doing it with several different shapes but to demonstrate that it generalize to N partitions, I find it easier to show that you can do it all with just a circle.
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Yes! The circle is nice for sure. But I love the different ones here too :)
@WiecznyWem
@WiecznyWem Жыл бұрын
So calming :)
@MathVisualProofs
@MathVisualProofs Жыл бұрын
👍
@tamirerez2547
@tamirerez2547 Жыл бұрын
In the geometric series of ½+¼+⅛ you wrote 1/2^i which is fine and correct, but not acceptable. The letter "i" is reserved for the root of -1. And what if you were to solve a problem with a triangle blocked inside a circle, would you mark one of the angles in the triangle with the Greek letter π? of course not. The spectators or students in the class will not understand what you mean when you say 2π. Twice the angles π, or twice pi. The same with the letter i. From the day it was established that i is the root of -1, this letter (i) should not be used for any variable in an equation. Besides of this, an amazing video, and teaches a lot. Graphics and illustration at a high level. BIG LIKE.
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thanks! In my experience, the letter "i" is often used as the index of a summation. So I think it is fairly standard, especially when complex numbers aren't involved. I agree that if I were using complex numbers in any way here, I wouldn't use i for the index . Thanks!
@tamirerez2547
@tamirerez2547 Жыл бұрын
@@MathVisualProofs Thanks for your response. After 35 years as a math teacher, I can say that I have never called an angle the letter delta (even if there is no ∆x in the problem) nor pi (even if there is no π^2 or 2π in the problem) And for similar reasons I didn't call the variable e and more... For me these are "holy" letters or, as a student once told me, these are "married" letters... 😉 they are already taken. In any case, I mentioned at the beginning that it is correct and okay to use the letter i but... there is a "but" here I love your videos and I admit that something in this visual illustration of yours is new and fascinating to me. Thanks for the great videos.❤️👍
@MathVisualProofs
@MathVisualProofs Жыл бұрын
@@tamirerez2547 Thanks! :)
@Patrik-bc2ih
@Patrik-bc2ih Жыл бұрын
That is interesting! I usually use X for the root of -1. I mean someone can see X^2=-1. So (3x+2)^2=-5+6x. Jokes aside what I have written is Z[X]/(x^2+1) which is isomorph to C. I understand your point, but Math is not about symbols but rather the meaning behind them.
@maximosavogin50
@maximosavogin50 Жыл бұрын
so imagine applying this to one it will result with infinity being the sum of infinite one to the power of any value as 1^x is always 1, therefor approaching the limit value of having 0 as the divisor which is a neat idea
@tompeled6193
@tompeled6193 Жыл бұрын
Σ(i=1, ∞)1/n^i=1/(n-1)
@MathVisualProofs
@MathVisualProofs Жыл бұрын
👍
@franktownly759
@franktownly759 3 ай бұрын
That's s=a/(1-r) S= sum a= first term of the series r= common ratio
@vesperiumYT
@vesperiumYT Жыл бұрын
For anyone who is still confused: ∞ ∞ ∑ 1/(nⁱ) = 1/(n-1) and ∑ n/((n+1)ⁱ) = 1 i=1 i=1
@JeanSarfati
@JeanSarfati Жыл бұрын
Splendid approach of Jacques Lacan split from the 2 registers (except the 3rd the real) imaginary and symbolic. The symbolic difficulty (algebra) is touchable. It is the same difficulty to become alphabetized from orality for the childs !
@yashmithmadhushan888
@yashmithmadhushan888 Жыл бұрын
Good job
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thank you!
@amoro.69
@amoro.69 Жыл бұрын
Mathematics is so unique ✨️
@MathVisualProofs
@MathVisualProofs Жыл бұрын
👍😀
@minhperry
@minhperry Жыл бұрын
Is it possible to prove this visually for each (1/n)^k series with a (n-1)-gon instead?
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Yes! The circle proof generalizes as well
@kadirjaelani8112
@kadirjaelani8112 Жыл бұрын
What application did you use to make the video animation?
@MathVisualProofs
@MathVisualProofs Жыл бұрын
I use manim (manimgl currently) for all the videos on my channel. But manimce will be better to use I think.
@GrifGrey
@GrifGrey Жыл бұрын
so what i am getting is, the sum of (1/n)^i as i goes from 1 to infinity is 1/(n-1)? That's very cool.
@GrifGrey
@GrifGrey Жыл бұрын
ope, now realised how many people came to the same conclusion sorry for the filler
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Definitely cool to see it right?
@MathVisualProofs
@MathVisualProofs Жыл бұрын
@@GrifGrey No worries! I am glad you noticed it and commented on it. That's the fun of it!
@jordkris
@jordkris Жыл бұрын
Proudly, I can guess any result of infinity sum just with see portions of shape
@GreenPower713
@GreenPower713 Жыл бұрын
Wow! Just... wow!
@MathVisualProofs
@MathVisualProofs Жыл бұрын
😀👍
@MaJetiGizzle
@MaJetiGizzle Жыл бұрын
Bwaaahhh it’s just one more in the denominator gotta love that geometry tho!!!
@parimalpandya9645
@parimalpandya9645 7 ай бұрын
What about Basel problem of sum of reciprocal of the squares and other problems of reciprocal of cubes
@MathVisualProofs
@MathVisualProofs 7 ай бұрын
Hard to get nice dissection proofs because of the values those produce
@Mo-uq4ix
@Mo-uq4ix Жыл бұрын
3:08 BLUE LOCK LESSGOOOOOOO!!!
@Gunslinger-us1ek
@Gunslinger-us1ek 10 ай бұрын
so you are practically done with geometric sums. I challenge you to try to give visual proves for certain harmonic progressions and arithmetic progressions. (I know I'm evil XD)
@MathVisualProofs
@MathVisualProofs 10 ай бұрын
Check out my playlists on finite and infinite sums. There are others besides geometric sums (though geometric are my faves)
@thanapornsaenkhum3631
@thanapornsaenkhum3631 Жыл бұрын
Thank you ,it is a really good visualize, please check your video at the time 5:43/6:45 , the result equal 1 ==> 1/7
@MathVisualProofs
@MathVisualProofs Жыл бұрын
I’m not sure what I should check ?
@WilliamWizer
@WilliamWizer Жыл бұрын
is there any proof that the parts of the pentagon are truly 1/6 each? not that I say they aren't but... how do you find the size of the inner pentagon?
@MathVisualProofs
@MathVisualProofs Жыл бұрын
You have to construct the pentagon with the appropriate radius. This is possible with straightedge and compass (though not straightforward). So you scale the radius of the inscribed circle down by the right value and then the outer ring will be evenly divided into 5 equal pieces.
@WilliamWizer
@WilliamWizer Жыл бұрын
@@MathVisualProofs that's the think I'm asking. by what value you scale the radius? how do you find that value? for the rest of the series it's easy to see how it's done but for pentagons it's a "scale to the right value" with no hint of how to find that value.
@Siya0000
@Siya0000 Жыл бұрын
@WilliamWizer You just need the smaller pentagon to be 1/6 of the larger one. The radius should be 1/sqrt(6).
@Siya0000
@Siya0000 Жыл бұрын
@WilliamWizer Which is approximately 40.8%.
@peterwolf8092
@peterwolf8092 Жыл бұрын
I am so dumb. The second one surprised me 🤣
@limenlemon3116
@limenlemon3116 Жыл бұрын
This probably counts for 1/0. There is so much proof that 1/0 is infinity: Since 1+(1/n)+((1/n)^2)+((1/n)^3)+((1/n)^4)+… = 1/(n-1), and 1/1 and 1^n = 1, then you can possibly make an infinite chain of ones with this method. Also, if 1/0.1 = 10, 1/0.001 = 1000, 1/0.000001 = 1 million, etc, then 1/0 should be infinity, no matter what. (Since there is an infinite amount of decimal places in 0) Thus, 1+1+1+1+1+… = 1/0
@ricekuo853
@ricekuo853 Жыл бұрын
So cool!
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Glad you liked it!!
@adipy8912
@adipy8912 Жыл бұрын
Geometry is my favorite thing in math(s)
@MathVisualProofs
@MathVisualProofs Жыл бұрын
👍😀
@guigazalu
@guigazalu Жыл бұрын
Cool use of manim.
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thanks!
@limenlemon3116
@limenlemon3116 Жыл бұрын
I tried 1/(n^n) with the sigma function, and it was ~1.291285. I named the constant after myself.
@אליהוסוחרב
@אליהוסוחרב Жыл бұрын
Awesome😮😮😮😮
@hermansims2296
@hermansims2296 Жыл бұрын
Just fascinating! And the natural world is expressed in these geometric mathematical truths! Just fascinating. H.M. Sims Citizen Mathematician
@MathVisualProofs
@MathVisualProofs Жыл бұрын
👍😃
@noah-tl1gv
@noah-tl1gv Жыл бұрын
wait so does it converge to a number, infinitely close but never reaching it, or does it actually eventually equal it?
@MathVisualProofs
@MathVisualProofs Жыл бұрын
To make sense of an infinite sum we let it be the limit of the partial sums with n terms as n goes to infinity. So the partial sums get infinitely close to the infinite sum but the infinite sum is the limit so the infinite sum is the fraction shown.
@k-senpai3203
@k-senpai3203 Жыл бұрын
You can just use a circle for every example instead of different shapes. Just watch the 1/7 part and be creative.
@abhishekmishra9371
@abhishekmishra9371 Жыл бұрын
summary :- sum of infinite geometry series of ( 1/n ) = ( 1/(n-1) ) Radhey Radhey
@MathVisualProofs
@MathVisualProofs Жыл бұрын
👍
@МаксимСеменуха
@МаксимСеменуха 10 ай бұрын
Can't one just extrapolate the circle diagram and apply it to any 1/nⁱ series?
@MathVisualProofs
@MathVisualProofs 10 ай бұрын
Yes. That will work.
@SridharGajendran
@SridharGajendran Жыл бұрын
Mesmerising...
@MathVisualProofs
@MathVisualProofs Жыл бұрын
:)
@jpopelish
@jpopelish Жыл бұрын
Looks like it works for denominators that are not integers, too, as long as they are more than 1. For example, sum of powers of 1/pi = 1/(pi-1). I don't know how to show that, geometrically, though. Perhaps you can help me.
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Here’s one way to do it in general : kzbin.info/www/bejne/jGivZqGph89qeac . I have a playlist that contains others too : kzbin.info/aero/PLZh9gzIvXQUsgw8W5TUVDtF0q4jEJ3iaw
@lostinthebluecity
@lostinthebluecity Жыл бұрын
can you name the music ?? ... so relaxing..
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Is linked in the description.
@Ghost2T
@Ghost2T Жыл бұрын
*_It is possible to apply certain areas that the opponent cannot in a short time be able to recognize. But this representation is only an approximation, because when approaching infinity if we use the device or solution to infinity, we will realize that the two sides are not equal. Anyone who thinks that they are equal is completely delusional._* *_however the video❤️ is still very nice!_*
@monoman4083
@monoman4083 Жыл бұрын
beauty arrives...
@MathVisualProofs
@MathVisualProofs Жыл бұрын
😎
@minakadri2221
@minakadri2221 Жыл бұрын
so relaxing
@MathVisualProofs
@MathVisualProofs Жыл бұрын
😀👍
@panichin1700
@panichin1700 4 ай бұрын
Great
@MathVisualProofs
@MathVisualProofs 4 ай бұрын
Thanks!
Sum of Squares Visual Proofs: From Level 1 to Level 5
3:22
Mathematical Visual Proofs
Рет қаралды 7 М.
A Dozen Proofs: Sum of Integers Formula (visual proofs) #SoME2
20:58
Mathematical Visual Proofs
Рет қаралды 56 М.
Кто круче, как думаешь?
00:44
МЯТНАЯ ФАНТА
Рет қаралды 6 МЛН
Quilt Challenge, No Skills, Just Luck#Funnyfamily #Partygames #Funny
00:32
Family Games Media
Рет қаралды 42 МЛН
Мама у нас строгая
00:20
VAVAN
Рет қаралды 12 МЛН
Don’t Choose The Wrong Box 😱
00:41
Topper Guild
Рет қаралды 29 МЛН
Why 4d geometry makes me sad
29:42
3Blue1Brown
Рет қаралды 994 М.
Animation vs. Math
14:03
Alan Becker
Рет қаралды 76 МЛН
A New Way to Look at Fibonacci Numbers
15:51
Jacob Yatsko
Рет қаралды 591 М.
Animation vs. Geometry
9:02
Alan Becker
Рет қаралды 14 МЛН
Infinite Series - Numberphile
9:31
Numberphile
Рет қаралды 442 М.
Seven Proofs Without Words for Summing Cubes
6:19
Mathematical Visual Proofs
Рет қаралды 2,4 М.
When Geometry Meets Infinity
10:02
Digital Genius
Рет қаралды 472 М.
Кто круче, как думаешь?
00:44
МЯТНАЯ ФАНТА
Рет қаралды 6 МЛН