BELIEVE IN ALGEBRA, NOT CALCULATOR

  Рет қаралды 1,199,771

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 1 700
@aasyjepale5210
@aasyjepale5210 5 жыл бұрын
i did some mental math, but hit a wall at trying to find the square root of 63,252,753,001
@iamgroot3615
@iamgroot3615 5 жыл бұрын
that’s some impressive mental math assuming you’re telling the truth . Is there a trick or something
@AngryAxew
@AngryAxew 5 жыл бұрын
@@iamgroot3615 theres no trick hes probably lying
@AngryAxew
@AngryAxew 5 жыл бұрын
r/iamverysmart
@marvinfung2050
@marvinfung2050 5 жыл бұрын
AngryAxew there's no reason not to be able to mental math those numbers Like 500(500+1) which is easier which is 250000+500 and it similar to the end
@narayanankannan6787
@narayanankannan6787 5 жыл бұрын
I mean it's OBVIOUSLY 251501.
@yuliaokhremenko6613
@yuliaokhremenko6613 5 жыл бұрын
I just started learning English, but the explanations are clear and interesting even at my levels of English. Thanks a lot 😁👍
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Юлия Охременко I am Glad to hear!
@enhace15anos.83
@enhace15anos.83 4 жыл бұрын
x2
@corona8073
@corona8073 4 жыл бұрын
U r indian Chinese korean or ....???
@donovanholm
@donovanholm 4 жыл бұрын
@@harelavv8806 the name may seem obviously Russian to some but not all
@siddharthsoni2101
@siddharthsoni2101 4 жыл бұрын
@@blackpenredpen hii
@Armbrust666
@Armbrust666 5 жыл бұрын
Wow... this essentially proved that if you take the product of four consecutive -numbers- integers and add one to it, than it's gone be a square number.
@ClimateAdam
@ClimateAdam 5 жыл бұрын
Awesome! Good spot!
@fanyfan7466
@fanyfan7466 5 жыл бұрын
Gábor Tóth holy shit you’re right! That’s crazy man
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Yup!!
@kingbeauregard
@kingbeauregard 5 жыл бұрын
The most pathological case I can think of is -1 thru 2, and yes indeed I get 1, which is a perfect square.
@pcklop
@pcklop 5 жыл бұрын
My professor had us prove a more general result: take the product of four numbers in arithmetic sequence, then add the fourth power of their common difference. Show that the result is a perfect square.
@BryanLu0
@BryanLu0 5 жыл бұрын
Instead distributing at 4:18 u = x^2 + 3x + 1 (u - 1)(u + 1) + 1 = u^2 So the root is x^2 + 3x + 1 = 251501
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Bryan Lu omg that cat!!!!
@AmitBentabou
@AmitBentabou 5 жыл бұрын
Or even u=x^2+3x, then u^2+2u+1
@matias12381
@matias12381 5 жыл бұрын
digno de nyan cat, jajajajaj
@mattat3847
@mattat3847 5 жыл бұрын
My life is a lie. I thought u subbing was only for integrals
@RunstarHomer
@RunstarHomer 5 жыл бұрын
@@mattat3847 nah man, sub whenever it makes the problem simpler
@sethdon1100
@sethdon1100 5 жыл бұрын
Olympic math taught me that insanely hard problems often had elegant solutions, this is no exception.
@blackpenredpen
@blackpenredpen 5 жыл бұрын
: ))))
@hafizh8461
@hafizh8461 4 жыл бұрын
@@leif1075???
@hemandy94
@hemandy94 4 жыл бұрын
@@leif1075 people like these are called problem solvers...
@drudi1
@drudi1 4 жыл бұрын
@@leif1075 well it took me about 5min to solve it so I think is not impossible to solve. All of this types of equations where you have 4 consecutive numbers multipled are done like this
@jayasri6764
@jayasri6764 4 жыл бұрын
Lol,This problem is actually super easy,(Every single Olympiad contestant would have solved this question,at some point of their life) .Insanely hard problems need not have simple solutions . That's a downside of the math Olympiad .They make you expect difficult problems have simple solutions.(Although,most imo contestants don t fall for this fallacy).Real insanely hard problems have not been solved by anyone,yet.
@threadeater345
@threadeater345 5 жыл бұрын
1990: we'll have flying cars by 2019 2019: 2=1+1, wow I'm a genius
@blackpenredpen
@blackpenredpen 5 жыл бұрын
LOL
@ghotifish1838
@ghotifish1838 4 жыл бұрын
2+2 is 4, minus one that's three quick maths
@Kyanzes
@Kyanzes 4 жыл бұрын
Flying cars... you can't even have a sharpie that could change color. Say, red and black.
@santinodemaria2818
@santinodemaria2818 4 жыл бұрын
@@ghotifish1838 topical meme reference
@unutentediyoutube3282
@unutentediyoutube3282 4 жыл бұрын
Well it can also be 2=500-498
@Hypoli
@Hypoli 4 жыл бұрын
My last words whispered in a final breath : "Don't forget the +1"
@ሰላምሰይጣን
@ሰላምሰይጣን 3 жыл бұрын
😂
@68plus1.
@68plus1. 2 жыл бұрын
LMFAOOO
@naiknaik8812
@naiknaik8812 2 жыл бұрын
He never resumed the video
@isaacqian-e3d
@isaacqian-e3d 5 ай бұрын
He added the one wdym 🧐
@leagueplays2100
@leagueplays2100 5 жыл бұрын
i put it in my calculator and got 251501, that was easy
@bowtangey6830
@bowtangey6830 5 жыл бұрын
Boo!
@Netherexio
@Netherexio 4 жыл бұрын
@The Balton American calculators are beasts
@paradox9265
@paradox9265 4 жыл бұрын
@@Netherexio Agreed but Americans aren’t
@Netherexio
@Netherexio 4 жыл бұрын
@@paradox9265 What do you mean?
@СвятославИерусалимов
@СвятославИерусалимов 3 жыл бұрын
It was easy, but not so beautiful like this)
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Did you know that 2 = 1 + 1?? I bet not! jk : )
@williamadams137
@williamadams137 5 жыл бұрын
blackpenredpen No i don’t, i need a calculator to this
@snejpu2508
@snejpu2508 5 жыл бұрын
That's pretty funnt, but sometimes such things are the most difficult to see, for example: we have f(x)=x^4+8x^3+18x^2+8x+17, and a question, for which x, the function f(x) is a prime. You can check infinitely many cases and never know the answer, but what makes this question easy (but on the other hand is not so obvious), is that 18=17+1. Because then we have (x^2+1)(x^2+8x+17), which has to be a prime. One of them has to be = 1, the other one has to be some prime then... We are left with only 2 cases, because we know, that 18=17+1. : )
@theolbiterator5408
@theolbiterator5408 5 жыл бұрын
No but I knew 2= 0.9+1.1.
@chaitanyagadekar5025
@chaitanyagadekar5025 5 жыл бұрын
I Known 2+2 = 5
@clubstepdj
@clubstepdj 5 жыл бұрын
What i know is 5/2 = 2 with int data type
@mr.n1933
@mr.n1933 5 жыл бұрын
Dafuq did i jusf watch.i lost it when the 2=1+1
@executorarktanis2323
@executorarktanis2323 4 жыл бұрын
You are not nerdy enough
@maheshagrawal7779
@maheshagrawal7779 5 жыл бұрын
no 2=1+1/2+1/4+1/8+1/16... you have got many misconceptions blackpenredpen!!!
@iabervon
@iabervon 5 жыл бұрын
When he writes 1, he's obviously just abbreviating 1/2+1/4+1/8+1/16+...
@InDstructR
@InDstructR 5 жыл бұрын
@@iabervon and when he writes 1/2 he's abbreviating for 1/4+1/8+1/16+...
@agces2001
@agces2001 5 жыл бұрын
@@InDstructR And when he writes 1/4 he's abbreviating 1/8 + 1/16 + 1/32+...
@InDstructR
@InDstructR 5 жыл бұрын
@ki kus won't stop me, And when he writes 1/8 he's abbreviating 1/16+1/32+1/64+1/128+...
@shounakghosh8595
@shounakghosh8595 5 жыл бұрын
Whoa that converged quickly
@tanmay8017
@tanmay8017 3 жыл бұрын
I remember solving this exact question in my JEE ( Mains ) exam.
@classicmelodyvetrivel710
@classicmelodyvetrivel710 2 жыл бұрын
@Sanat R mains usually has easy questions
@Avighna
@Avighna 2 жыл бұрын
@Sanat R - Study Vlogs Sure, yeah, "easy question" 😬
@Avighna
@Avighna 2 жыл бұрын
@Sanat R - Study Vlogs Woah, really? What kinda questions do they ask? Could you send me a link?
@steve2817
@steve2817 5 жыл бұрын
1 + 1 = 3 And sinx/n=six=6.
@rio_agustian_
@rio_agustian_ 5 жыл бұрын
You stupid, 1 + 1 ≠ 3 3 = 2 + 1 π = 2 + 1 π - 1 = 2
@CookieJar2025
@CookieJar2025 5 жыл бұрын
@@rio_agustian_ so π = 3 lol nice discovery
@Kevin-14
@Kevin-14 5 жыл бұрын
@@CookieJar2025 e = 3 = π
@SameerKhan-nd5qb
@SameerKhan-nd5qb 5 жыл бұрын
@@rio_agustian_ noob
@SameerKhan-nd5qb
@SameerKhan-nd5qb 5 жыл бұрын
@@Kevin-14 lool nooob
@ganaraminukshuk0
@ganaraminukshuk0 5 жыл бұрын
"If you're using a calculator, why are you watching this video?" Sanity check.
@blackpenredpen
@blackpenredpen 5 жыл бұрын
hahahahaa
@andrel8243
@andrel8243 3 жыл бұрын
I am a calculator, not a person
@mysticdragonex815
@mysticdragonex815 3 жыл бұрын
*laughs in Shakuntala Devi
@rd8396
@rd8396 5 жыл бұрын
Take x ^2 + 3x = a Then in step 2 a(a+2) + 1 a^2 + 2a + 1 = (a+1)^2
@mat1305h
@mat1305h 5 жыл бұрын
Yes much easier, and you see it imediatly too.
@Polarspy
@Polarspy 5 жыл бұрын
was about to say this, i think it's a lot more intuitive
@milanmitreski7657
@milanmitreski7657 5 жыл бұрын
Isn't it beautiful how one problem can be solved in diffrent ways, even if the idea and the method are nearly the same. That's why we love maths.
@sanjaisrao484
@sanjaisrao484 5 жыл бұрын
@@milanmitreski7657 Yes
@akshetpatial5466
@akshetpatial5466 5 жыл бұрын
You extra smart boy the time required here will be same
@tiborgrun6963
@tiborgrun6963 5 жыл бұрын
Not only 2 = 1+1, but also 0 = 1-1. From the second row: (x^2+3x+1-1)(x^2+3x+1+1)+1 and per the third binomial equation = (x^2+3x+1)^2 -1^2 +1 = (x^2+3x+1)^2
@etemkaandelibas3649
@etemkaandelibas3649 5 жыл бұрын
I didn't understand. Where did you use binomial expansion
@jinja3113
@jinja3113 5 жыл бұрын
0 = 1-1 1 = 1*1 2= 1+1
@yogeshpathak73
@yogeshpathak73 5 жыл бұрын
I didn't see any binomial here... But what i see is that you used the form (a+1)(a-1) + 1 = a^2 - 1 +1= a^2
@Bayerwaldler
@Bayerwaldler 4 жыл бұрын
@@yogeshpathak73 I think Tibor Grün is from Germany. In German school curriculum the formula (a+b)*(a-b) = a^2 - b^2 is known as 3. binomial formula. b=1 is a special case.
@yogeshpathak73
@yogeshpathak73 4 жыл бұрын
Oh ok... Didn't know that. Thanks.
@DatSwif
@DatSwif 4 жыл бұрын
This is beautiful. I've been looking at it for five hours now
@dr3w199
@dr3w199 5 жыл бұрын
Nice. I did it this way: Assume that the expression is a square number so: x(x+1)(x+2)(x+3)+1 = n^2 x(x+1)(x+2)(x+3) = n^2 - 1 x(x+1)(x+2)(x+3) = (n+1)(n-1) What I did then is realise that the factors of the product on the right differ by 2. Playing around you can find that: x(x+3) = x^2+3x = n-1 (x+1)(x+2)=x^2+3x+2 = n+1 So n = x^2 + 3x + 1 Not as neat as your method though! Thanks for the video
@juanbomfim22
@juanbomfim22 5 жыл бұрын
OMG ive almost done it completely. i just stopped at (n+1)(n-1) lol WD! i mean 'not that almost' lmao
@joshuamason2227
@joshuamason2227 5 жыл бұрын
How do I play around with it
@dr3w199
@dr3w199 5 жыл бұрын
@@joshuamason2227 Well you have the product of 3 binomials and a monomial for which we can multiply in any order. If you try a few cases, or think about it you spot that x(x+3) and (x+1)(x+2) have a difference of 2.
@joshuamason2227
@joshuamason2227 5 жыл бұрын
@@dr3w199 okie
@sunnykarwani3556
@sunnykarwani3556 4 жыл бұрын
Damn... It's a great method. Neat work. 💯
@chaitanyagadekar5025
@chaitanyagadekar5025 5 жыл бұрын
0:09 That was PowerFul
@mhm6421
@mhm6421 Жыл бұрын
Continueing from: sqrt( (x^2 + 3x) (x^2 + 3x + 2) + 1 ) let y = x^2 + 3x sqrt( y * (y + 1) + 1 ) = sqrt( y^2 + y + 1 ) = sqrt( (y+1)^2 ) = y + 1 = x^2 + 3x + 1 = (x + 1) (x + 2) - 1 = 501 * 502 - 1 = 251501 much easier to multiply :p
@razvy3827
@razvy3827 Жыл бұрын
that is what i wanted ti type nice 👍
@Inujasa88
@Inujasa88 5 жыл бұрын
0:10 is this a pewdiepie reference? 😂😂
@albel2094
@albel2094 5 жыл бұрын
He liked it!!!
@randomdude9135
@randomdude9135 4 жыл бұрын
@@albel2094 yupp
@randomdude9135
@randomdude9135 4 жыл бұрын
Yupp
@workout9594
@workout9594 4 жыл бұрын
3:20 I solved it differently. Let y= x^2+3x. Then substitute y into the expression making y(y+2)+1, distribute so y^2+2y+1 and that is a perfect square of (y+1)^2. Here, the square root and exponent cancel each other leaving y+1, sub back in x and then easily find the answer :)
@matthewmanzanares6798
@matthewmanzanares6798 2 жыл бұрын
this is also what I did and I think that this is a bit better because you don't have to split 2 into 1 + 1 and do the rest
@cheesecircle3033
@cheesecircle3033 Жыл бұрын
That's what I did as well
@TheS1lentX
@TheS1lentX 5 жыл бұрын
Jeez thats smart *proceeds to use the calculator to prove that 251501 is the right answer*
@thatssokwekwe
@thatssokwekwe 2 жыл бұрын
I expressed it as sqrt((501.5-1.5)(501.5-0.5)(501.5+0.5)(501.5+1.5)+1) You get two a^2-b^2 expressions that you can multiply out, add the 1, and then factor into a squared quadratic expression Very neat and, as someone mentioned elsewhere, it generalizes to “1 plus the product of any four consecutive integers is a perfect square”
@detachedmars158
@detachedmars158 5 жыл бұрын
You can also put a +1-1 inside the x^2+3x bracket and it'll be in the form of (a+b)(a-b).
@kilindogma9711
@kilindogma9711 5 жыл бұрын
that's what i thought he was gonna do as well but what he did was cool as well.
@ssdd9911
@ssdd9911 5 жыл бұрын
why?
@iabervon
@iabervon 5 жыл бұрын
Yeah, (x-1)(x+1)+1=x^2-1^2+1 seems easier to find than multiplying out exactly the right portion of the big expression.
@isaacdeutsch2538
@isaacdeutsch2538 4 жыл бұрын
I chose to make x = 502, which ends up yielding a nice difference of squares and a two term quadratic, which is much easier to distribute. The quartic you get has a palindromic pattern reminiscent of pure binomial coefficients, making it tempting to say the golden ratio is a root. It is, in fact, a root, so synthetically divide the quartic by the golden ratio identifying polynomial, x² - x - 1. You end up with the golden ratio identifying polynomial again, meaning that the original quartic in that square root is (x² - x - 1)², so cancel the power and the root. Plug 502 back in for x, some quick multiplying and subtracting by hand and you've got 251501.
@asa-ze1kn
@asa-ze1kn 5 жыл бұрын
I'm only in 8th grade Algebra 1 but I was using variables to find how some of your factorizations works. You went from (x^2+3x)(x^2+3x+2)+1 to (x^2+3x)(x^2+3x+1)+(x^2+3x+1). What I did was set (x^2+3x) to a variable (a). (a)(a+2)+1 a^2+2a+1 (a+1)(a+1) Now substitute back in. (x^2+3x+1)(x^2+3x+1) When in doubt use variables..
@trueriver1950
@trueriver1950 5 жыл бұрын
Yes, that's using even more algebra than BPRP did.
@zocker2586
@zocker2586 5 жыл бұрын
Well yes because using the variables is actually the logic behind the solution, it's just that it was invisible throughout the process :D
@baranibarani4970
@baranibarani4970 5 жыл бұрын
Where r u from?
@sanjanabiswas9774
@sanjanabiswas9774 4 жыл бұрын
Agreed! Variables always help to proceed the solution.
@enricomassignani
@enricomassignani 4 жыл бұрын
I put x=500 but multiplied everything. In the end i got to sqrt((x+y)^2) with x=500 and y=501^2
@blackflash9935
@blackflash9935 5 жыл бұрын
5:48 “Back in my day kids would use *ALGEBRA* but now their brains are rotting from these darn *CALCULATORS* ”
@almightyhydra
@almightyhydra 5 жыл бұрын
3:20 just put y = x^2 + 3x, then you have y(y+2) + 1 = y^2 + 2y + 1 = (y+1)^2. So the answer is y + 1, or x^2 + 3x + 1.
@cypherx7247
@cypherx7247 5 жыл бұрын
I also did it in this way...but that way was also fine...its all about which method comes in your head first
@lasergamer2869
@lasergamer2869 3 жыл бұрын
Dang that’s genius
@star_ms
@star_ms 2 жыл бұрын
Seemingly elementary problems can have wonderfully elegant solutions! All we need is to substitute a number with x, and the magic begins.
@lucasxue2211
@lucasxue2211 2 жыл бұрын
i remember my math teacher asking me to prove that n(n+1)(n+2)(n+3) + 1 is always a perfect square given that n is an integer
@snatchngrab8262
@snatchngrab8262 3 жыл бұрын
The world needs more teachers like you. I'm more impressed by your teaching skills than any math. Much respect.
@agabe_8989
@agabe_8989 5 жыл бұрын
0:01 that's my life philosophy now
@bucinoulje7505
@bucinoulje7505 3 жыл бұрын
i watched this video this video right before my math competition and the same type of question came up on the task sheet. Thank you very much!
@bucinoulje7505
@bucinoulje7505 3 жыл бұрын
for those wondering the question was 202120212019(202120212021)(202120212023) all over 100010001 x (202120212021 squared +4)
@jekoddragon6227
@jekoddragon6227 5 жыл бұрын
now do it with CALCULUS
@davidappell3105
@davidappell3105 4 жыл бұрын
Why do you think this is funny?
@gabrielpinhal8325
@gabrielpinhal8325 4 жыл бұрын
@@davidappell3105 because suffering is funny
@sanchit6107
@sanchit6107 3 жыл бұрын
@@davidappell3105 Its FUNI
@pfever
@pfever 5 жыл бұрын
Sorry...Time over! give me your exam!
@martinepstein9826
@martinepstein9826 2 жыл бұрын
Nice factoring method but it might have taken me a while to spot. Multiplying out and factoring isn't so bad (x - 1)x(x + 1)(x + 2) + 1 = (x^2 - 1)(x^2 + 2x) + 1 = x^4 + 2x^3 - x^2 - 2x + 1 = (x^2 + bx +- 1)^2 = x^4 + 2bx^3 + (b^2 +- 2)x^2 +- 2bx + 1 We see this works if b = 1 and c = -1 so the answer is 501^2 + 501 - 1 = 500^2 + 2*500 + 1 + 500 = 251501
@SanjayKumar-wh6cd
@SanjayKumar-wh6cd Жыл бұрын
Another nice solution is to assume x=501.5 And rewrite the equation which would give x⁴-(5/2) x²+(9/16) +1 which is basically (x²-5/4) ² The square and square root will cancel and give x²-5/4 Taking lcm would give us ((2x)² - 5) /4 (2x)²=1003² which can be computed very easily as 1003=1000+3 And then we just have to subtract 5 and divide by 4
@imadkhan1825
@imadkhan1825 5 жыл бұрын
You can also this as x^2+3x=t and expression would become t(t+2)+1 =(t+1)^2 this que came in practice test for jee last week And guess what i solved that 😎😎😎👍👍
@SawkTheFighter13
@SawkTheFighter13 2 жыл бұрын
Why are your videos so entertaining? I'm so glad I came across this channel.
@ozonejgs2887
@ozonejgs2887 5 жыл бұрын
I am so impressed with myself, I actually used the same method you did before watching the video =D
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Jan Wrobel nice!!!!
@yannisdekonoha
@yannisdekonoha 3 жыл бұрын
When he drops the "Check this out", you know crazy stuff will happen on the board
@LudwigvanBeethoven2
@LudwigvanBeethoven2 5 жыл бұрын
Every body knows 1+1=2 but i know 1+1 =/= 3
@blackpenredpen
@blackpenredpen 5 жыл бұрын
♫♪Ludwig van Beethoven♪♫ Hahahhaha
@jgsh8062
@jgsh8062 3 жыл бұрын
I’ve got you all beat with 1+1 > 0
@JDguy11222
@JDguy11222 3 жыл бұрын
@@jgsh8062 nah mine's better 1+1≠1+1
@laudine878
@laudine878 5 жыл бұрын
Doing a PhD in Literary Studies, but stuff like this is why I absolutely love maths ♥
@MrShad
@MrShad 5 жыл бұрын
What a incredible content. Im a student of math (i'll be a teacher in the future) from Brazil. Thank you so much for sharing knowledge!
@-Mohammed_S
@-Mohammed_S 4 жыл бұрын
Your explanation is awesome . I like your teaching very much. Thanks
@DavidS-qn3jm
@DavidS-qn3jm 5 жыл бұрын
I did assume there was a nice solution, but expanding under the root to get x^4 + 6x^3 + 11x^2 + 6x + 1 was pretty easy, and then matching coefficients in (x^2 + ax + 1)^2 was straightforward too. But yeah, the main thing is to replace 500 by x. I don't think I could intuitively see which two of the brackets would make it easier, and I'm not sure that's a better method than expanding the whole thing to only 4 terms (plus the one on the outside).
@tanmaygupta7778
@tanmaygupta7778 8 ай бұрын
3:43 If we assume x^2+3x to be t we get t + 1 whole squared which is a lot easier
@ammardaffa
@ammardaffa 5 жыл бұрын
I know this kind of the prob, i use (n+1)(n+2)-1
@ultrio325
@ultrio325 3 жыл бұрын
Just wanted to say after some work, some variable assigning and a lucky coincidence later, I found the answer! My steps: Let a=500 Expand a(a+1)(a+2)(a+3) to a^4+6a^3+11a^2+6a+1 Complete the square (or the fourth in this case): a^4+4a^3+6a^2+4a+1+2a^3+5a^2+2a =(a+1)^4+2a(a^2+2a+1+.5a) =(a+1)^4+2a((a+1)^2+.5a) =(a+1)^4+2a(a+1)^2+a^2 Observe this follows the perfect square structure. Therefore: (a+1)^4+2a(a+1)^2+a^2 =[(a+1)^2+a]^2 Square rooting gives: (a+1)^2+a a^2+3a+1 By substitution: a^2+3a+1 =250000+1500+1 =251501
@eannacoleman957
@eannacoleman957 2 жыл бұрын
I love the explanation, though I did it a bit differently. When I got to the second line, I substituted (x²+3x) as y and found that that worked much simpler than distributing 2 as 1+1.
@tempomi760
@tempomi760 3 жыл бұрын
Blew my mind! Earned yourself a new subscriber! Keep up the good work!👍
@jdsingh3607
@jdsingh3607 5 жыл бұрын
Now this video makes me like algebra
@FermionClasses
@FermionClasses 3 жыл бұрын
kzbin.info/www/bejne/jomVdXxvepatjJo
@cococh3607
@cococh3607 4 жыл бұрын
I got the point. Convert the number into variables. For example 500=x or 2=1+1 = a (convert what you want) Thank you for the useful tips... I realized that the algebra is so amazing at the complicated situation.
@msmmath87
@msmmath87 5 жыл бұрын
Really good solution! GOOD Teacher👍
@ugursoydan8187
@ugursoydan8187 3 жыл бұрын
a very good perspective and a very good solution. thank you!!!
@LiegeNorth
@LiegeNorth 3 жыл бұрын
this guy is a genius!
@Hecti161
@Hecti161 5 жыл бұрын
The factorization was more if you defined a variable "a" that was equal to x^2+3x Because since you multiply and you have left (X^2+3X)(X^2+3X+2)+1 With the variable "a" you had left (a)(a+2)+1 And that is equal to (a^2+2a+1) And that is factorizable as (a+1)^2 Greetings from Mexico
@hellopeter121
@hellopeter121 5 жыл бұрын
What Everybody knows : 1+1=2 What BPRP knows : 2=1+1 . . . . . What I know : 1+1=2 and 2=1+1 😇😇😇😇😇😇😇😇😇😇😇
@adrianau5231
@adrianau5231 5 жыл бұрын
Actually why not: √(500)(501)(502)(503)+1 = x 500.501.502.503 +1 = x² 500.501.502.503 = x²-1 (500.503) (501.502) =(x-1)(x+1) 251500 × 251502 = (x-1) (x+1) x = ±251501 but we have to reject -251501 because it is negative in a square root
@paawanjethva
@paawanjethva 5 жыл бұрын
Everybody knows e^{iτ}=1 . . . . But I know 1=e^{iτ}
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Nice!!!
@paawanjethva
@paawanjethva 5 жыл бұрын
@@日本人じゃありません That's e^{iπ}. τ=2π
@fgvcosmic6752
@fgvcosmic6752 5 жыл бұрын
My mans using tau! Up top!
@peterg644
@peterg644 5 жыл бұрын
@@日本人じゃありません he's using tau not pi
@ridwansetiadi8393
@ridwansetiadi8393 5 жыл бұрын
If somebody can't understand 3:59, you can try another method; you can also substitute the line 3 of 'Obs' into another variable, for example: y If: y = x²+3x Then the equation becomes: = (y+2)(y)+1 = y²+2y+1 Factorize that into this: = (y+1)² So, sqrt[(y+1)²] = y+1 Since y = x²+3x The equation becomes: = x²+3x+1 Since x = 500 The result is: = (500)²+3(500)+1 = 251501
@DarkRedZane
@DarkRedZane 4 жыл бұрын
I have never been so hyped at 2 = 1+1 before.
@gedlangosz1127
@gedlangosz1127 5 жыл бұрын
Solved it! For a clean solution to exist I assumed that x·(x + 1)·(x + 2)·(x + 3) + 1 is a perfect square for any integer x. Playing around with x = 1 & x = 2 it is quickly apparent that x·(x + 3) + 1 is a contender for the solution. It is easy to prove that this is the solution by expanding out [x·(x + 3) + 1]² and showing that it is equivalent to x·(x + 1)·(x + 2)·(x + 3) + 1 I doubt I would have spotted the algebraic manipulation that BPRP used without knowing the solution first. I also learn something new i.e. the product of four consecutive integers plus 1 is always a perfect square. Thank you for the video - I enjoyed this one.
@kinyutaka
@kinyutaka 5 жыл бұрын
I'm doing this on the toilet, so I only hope I'm starting correctly, with (500)(502)=(501²-1) and (501)(503)=(502²-1) But then again, we could cheat and go with (501)(502)=(501½²-¼) and (500)(503)=(501½²-9/4)?
@backyard282
@backyard282 5 жыл бұрын
you can also use substitution x^2+3x = t and you get t(t+2)+1=t^2+2t+1=(t+1)^2 and replace t: (x^2+3x+1)^2
@joaoaugusto9221
@joaoaugusto9221 4 жыл бұрын
You could also do like: Consider 501 as “x” and 502 as “y” You can rewrite the sentence like: (x-1).(x+1).(y-1).(y+1) +1 That’s equal to: (x^2 - 1^2).(y^2 - 1^2) +1 Or (501^2 - 1).(502^2 - 1) +1 And there’s your answer xD!!
@ZiebartPatel
@ZiebartPatel 5 жыл бұрын
A generalisation of the algebraic expression - (X)(X+1)(X+2)(X+2)+1= (Y)^2
@whyit487
@whyit487 5 жыл бұрын
I love your videos about not using calculators (Like the Wolfram-Alpha video)! They're the best! Keep up the good work! It's nice going back to algebra sometimes...
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Why It? Yea me too. I try to mix things up a bit.
@deathzonesimang8043
@deathzonesimang8043 5 жыл бұрын
If you guys want to know the “secret”, it is if the sum of the digits in any number add up to a multiple of 3, it is divisible by 3. E.g 567: 5+6+7=18. 18 is a multiple of 3 thus 567 is divisible by 3.
@deathzonesimang8043
@deathzonesimang8043 5 жыл бұрын
@Cerebro Spinal I was referring to the part at the end of the video
@dev.imperatus6105
@dev.imperatus6105 5 жыл бұрын
Hmmm ive got an easier way when you use 1 + 1 instead of 2 Here is how I do according to you: (x^2+3x+2)(x^2+3x+1) =(x^2+3x)^2 +2 then √((x^2+3x)^2 +2) = x^2+3x+1
@XWurstbrotX
@XWurstbrotX 5 жыл бұрын
You can't solve squareroots of sums like that, eventhought your result is correct.
@jcb3393
@jcb3393 4 жыл бұрын
I did it by recognizing that (x^2+3x)(x^2+3x+2) is easily simplified with a substitution of y=(x^2+3x+1). It simplifies to (y-1)(y+1) = y^2 - 1. Since we have a "+1" hanging out after the 4-term product, that gets rid of the "-1" in our simplified expression, yielding just y^2 under the radical sign. square root of y^2 = y. That means the solution is our substitution: y=(x^2+3x+1). Plugging in 500 for x gives us 251501.
@-a5624
@-a5624 5 жыл бұрын
I know this is not related to this video but I wanted to post this on a new video so you might see it :) your trick for integrals of thinking "wouldn't it be nice if..." has helped me so so much, so thank you :) love your videos!
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Awww thank you!!!!!
@mesballo2224
@mesballo2224 3 жыл бұрын
Your way to solve this is pretty AWESOME!! First I multiplied all together, i got x^4 + 6x^3 + 11x^2 + 6x + 1 then i calculate this polynomial for x=1 x=2 x=3 ....all the time i got a square!! I was really surprise!! I didn't expect x(x+1)(x+2)(x+3)+1 to be a perfect square for all x at all!!! This is incredible!! Thanks for sharing your knowledge you are very inspiring to me
@sadeekmuhammadryan4894
@sadeekmuhammadryan4894 2 жыл бұрын
There are things to learn from each of your videos 😁❤️
@deadvirgin428
@deadvirgin428 10 ай бұрын
Well yes, that's the point.
@gaetanocantisani3762
@gaetanocantisani3762 5 жыл бұрын
I find the solution in a different way: k(k+1)(k+2)(k+3)=x^2-1 =(x-1)(x-2), and the difference between these number is 2; so multiplying k(k+3)=k^2+3k (k+1)(k+2)=k^2+3k+2 I have the numbers with desidered difference. So x=k(k+3)+1, having the result with substitution 500->k.
@aikenkazim5318
@aikenkazim5318 5 жыл бұрын
please give an example differentiation of complex functions
@ericli2723
@ericli2723 5 жыл бұрын
An alternative way to solve it is by letting x = 501.5 and change the expression into sqrt((x - 3/2)(x - 1/2)(x + 1/2)(x + 3/2) + 1) The inspiration for this is difference of squares, simplifying gives. = sqrt( (x^2 - 9/4)(x^2 - 1/4) + 1) = sqrt( x^4 - 10/4(x^2) + 9/16 + 1) = sqrt(x^4 - 5/2(x^2) + 25/16) = sqrt((x^2 - 5/4)^2) , *factors nicely, perfect square* = x^2 - 5/4 = (501.5)^2 - 1.25 = 251501
@cfgauss71
@cfgauss71 4 жыл бұрын
Except the 501.5^2 part is not so pleasant by hand. Not the best alternative.
@Kino-Imsureq
@Kino-Imsureq 5 жыл бұрын
BPRP know 2 = 1+1 I know 2 = 2 what happened to the comment button its gray
@jinja3113
@jinja3113 5 жыл бұрын
I know 2 = two
@reza1219
@reza1219 3 жыл бұрын
if only most teachers were like this guy, it actually makes me wanna learn math again and I'm 29 years old! not gonna lie that did look fun for some reason.
@mango417
@mango417 4 жыл бұрын
"And now, here's the deal"… You know that when he pronounces that phrase things are 'bout to get complicated.
@denisikonomi2019
@denisikonomi2019 3 жыл бұрын
If you guys want a tip to make the solution simpler Set 501 as x instead of 500 That way (x-1)(x)(x+1)(x+2)+1 is under the square root Which many can see the only tedious multiplying we’d have to do is (x^2 - 1)(x^2 + 2) You’ll then find the equation to be x^2 + x - 1 Which gives the same result Just helps save space and makes the problem less tedious
@noverdy
@noverdy 5 жыл бұрын
Everybody know e^2.pi.i = 1 . . But I know 1 = e^2.pi.i
@mundane3809
@mundane3809 5 жыл бұрын
Wrong it's - (e ^ pi × i)
@nikolas9105
@nikolas9105 5 жыл бұрын
@@mundane3809 Nice try but thats -1 ignoring your name
@mundane3809
@mundane3809 5 жыл бұрын
@@nikolas9105 no e ^ ( pi × i ) = -1 So if you make -1 negative, it become positive.
@RunstarHomer
@RunstarHomer 5 жыл бұрын
@@mundane3809 you are correct but the original comment was also correct. e^2πi = 1.
@mundane3809
@mundane3809 5 жыл бұрын
@@RunstarHomer oof yea it's actually correct. sorry for the mistake!
@SpongeDude8
@SpongeDude8 5 жыл бұрын
More impressed with how someone came up with the question
@moosemoosington1441
@moosemoosington1441 2 жыл бұрын
Dude, I always had a good grasp on algebra as a kid and in highschool I always aced most algebra, but somehow my teachers (and I) missed this property of algebraic equations. So freaking cool. It has been nigh on 15 years since high school, but I am still learning new and cool algebra. Thanks so much blackpenredpen!
@谢天陈
@谢天陈 3 жыл бұрын
what about using x. First allow the equation equal to x, then square both sides and then both sides minus 1. We get (x+1)(x-1)=(500)(501)(502)(503). Then I found out that (500)(503)is two less than (502)(501) and the answer would be 500*503+1=251501. The last step can be done be simple calculation, no calculator needed.
@Mothuzad
@Mothuzad 3 жыл бұрын
Shout-out to my colorblind fam who can never tell when he switches pens
@MrJdcirbo
@MrJdcirbo 5 жыл бұрын
I multiplied everything out and got stuck... This is a brilliant solution. One day I will achieve this type of mathematical intuition. Lead the way, blackpenredpen!!!
@DriffPL
@DriffPL 5 жыл бұрын
I think you forgot about the absolute value; Square root of a 2nd power produces absolute value result because both positive and negative values are true.
@bttfish
@bttfish 5 жыл бұрын
Dunkoro it is obvious that the number inside the square root is positive,so ignore the absolute value symbol
@tomerwolberg37
@tomerwolberg37 5 жыл бұрын
You could have made it simpler using the (a-b)(a+b)=a^2-b^2 formula. (x^2+3x)(x^2+3x+2)+1 = (x^2+3x+1-1)(x^2+3x+1+1)+1 = (x^2+3x+1)^2-1^2+1 = (x^2+3x+1)^2
@ishmeetsingh1146
@ishmeetsingh1146 5 жыл бұрын
Wow your method and my method are similar .....I had take the whole expression as y and then square it and then assume x to be 500 and multiplied and had taken x^2+3x to be z and at end I got y=z+1 that is y = x^2 + 3x + 1 and it's done
@vudomath
@vudomath 4 жыл бұрын
At 3:45, you could also treat the first factor as (x^2+3x+1-1) so together with the second factor you have (x^2+3x+1-1)(x^2+3x+1+1) = difference of squares ((x^2+3x+1)^2 - 1. Plus the extra 1 on the outside you get the perfect square.
@黎真-e3f
@黎真-e3f 5 жыл бұрын
The conclusion of this question is : [ First number + second number ^2 ]
@martinteichert9209
@martinteichert9209 5 жыл бұрын
the easier way would be to solve it symmetrically: lets say x equals 501,5 in this case.. then the product would be (x-1,5)(x+1,5)(x-0,5)(x+0,5)+1= (x^2-2,25)(x^2-0,25)+1= x^4-2,5*x^2+0,5625+1 which is obviously (x^2-1,25)^2
@enzoTHEferrari
@enzoTHEferrari 5 жыл бұрын
I understood everything until the bit at 4:35 - 5:04 What do you mean by "factoring out"?
@AE-rg5rc
@AE-rg5rc 5 жыл бұрын
When a number repeats itself in an addition you can factor it out, basically do the inverse of distributive property. So we have x²+3x+1 repeating in both therms. You can factor it out and you will be left with x²+3x+1 ( x²+3x +1), equivalent to x²+3x+1( x²+3x) + x²+3x+1 (1)
@leif1075
@leif1075 5 жыл бұрын
@@AE-rg5rc but thats just squaring it and you don't have two of the sake expression..you don't jave twobx squared plus 3x plus 2 you only,have one
@ViratKohli-jj3wj
@ViratKohli-jj3wj 5 жыл бұрын
@@leif1075 please Learn some math, this is for grade 6 atleast in asian countries.
@leif1075
@leif1075 5 жыл бұрын
@@ViratKohli-jj3wj I know some math, thanks very much..I had a valid question
@user-yg97f5hfvh
@user-yg97f5hfvh 5 жыл бұрын
You may substitute x^2+3x = t and make t(t+2)+1 = t^2+2x+1 so square root of t^2+2x+1 is t+1=x^2+3x+1(same)
@GodzillaFreak
@GodzillaFreak 5 жыл бұрын
Just do the multiplication by hand.
@avisinha9331
@avisinha9331 2 жыл бұрын
Just say x^2+3x = y y(y+2) + 1 = y^2+2y +1 =( y+1)^2 Comes out of root as (Y+1) = x^2+3x + 1 And put the values
@alexsandroagustini714
@alexsandroagustini714 4 жыл бұрын
Him: Starts the video with 1+1=2 Me: *ok we are getting somewhere now
@curtisw0234
@curtisw0234 Жыл бұрын
Why not substitute y=x^2 + 3x then you can expand that to get y^2 + 2y + 1 = (y+1)^2. Perfect for cancelling out the square root
Dear Tejas, challenge ACCOMPLISHED! (Speed run, Uncut)
4:24
blackpenredpen
Рет қаралды 1,1 МЛН
the sine triangle problem
11:18
blackpenredpen
Рет қаралды 89 М.
Увеличили моцареллу для @Lorenzo.bagnati
00:48
Кушать Хочу
Рет қаралды 8 МЛН
FOREVER BUNNY
00:14
Natan por Aí
Рет қаралды 22 МЛН
Walking on LEGO Be Like... #shorts #mingweirocks
00:41
mingweirocks
Рет қаралды 7 МЛН
A Brilliant Limit
16:58
blackpenredpen
Рет қаралды 1,4 МЛН
believe in the math, not wolframalpha
14:50
blackpenredpen
Рет қаралды 1,1 МЛН
I accidentally discovered lead sponge...
15:06
NileRed
Рет қаралды 3,6 МЛН
The most unexpected answer to a counting puzzle
5:13
3Blue1Brown
Рет қаралды 13 МЛН
Looks so simple yet my class couldn't figure it out, Reddit r/askmath
5:45
bprp calculus basics
Рет қаралды 1,4 МЛН
Believe in geometry, not squaring both sides!
6:37
blackpenredpen
Рет қаралды 285 М.
A Proof That The Square Root of Two Is Irrational
17:22
D!NG
Рет қаралды 6 МЛН
I visited the world's hardest math class
12:50
Gohar Khan
Рет қаралды 1,5 МЛН
Увеличили моцареллу для @Lorenzo.bagnati
00:48
Кушать Хочу
Рет қаралды 8 МЛН