i did some mental math, but hit a wall at trying to find the square root of 63,252,753,001
@iamgroot36155 жыл бұрын
that’s some impressive mental math assuming you’re telling the truth . Is there a trick or something
@AngryAxew5 жыл бұрын
@@iamgroot3615 theres no trick hes probably lying
@AngryAxew5 жыл бұрын
r/iamverysmart
@marvinfung20505 жыл бұрын
AngryAxew there's no reason not to be able to mental math those numbers Like 500(500+1) which is easier which is 250000+500 and it similar to the end
@narayanankannan67875 жыл бұрын
I mean it's OBVIOUSLY 251501.
@yuliaokhremenko66135 жыл бұрын
I just started learning English, but the explanations are clear and interesting even at my levels of English. Thanks a lot 😁👍
@blackpenredpen5 жыл бұрын
Юлия Охременко I am Glad to hear!
@enhace15anos.834 жыл бұрын
x2
@corona80734 жыл бұрын
U r indian Chinese korean or ....???
@donovanholm4 жыл бұрын
@@harelavv8806 the name may seem obviously Russian to some but not all
@siddharthsoni21014 жыл бұрын
@@blackpenredpen hii
@Armbrust6665 жыл бұрын
Wow... this essentially proved that if you take the product of four consecutive -numbers- integers and add one to it, than it's gone be a square number.
@ClimateAdam5 жыл бұрын
Awesome! Good spot!
@fanyfan74665 жыл бұрын
Gábor Tóth holy shit you’re right! That’s crazy man
@blackpenredpen5 жыл бұрын
Yup!!
@kingbeauregard5 жыл бұрын
The most pathological case I can think of is -1 thru 2, and yes indeed I get 1, which is a perfect square.
@pcklop5 жыл бұрын
My professor had us prove a more general result: take the product of four numbers in arithmetic sequence, then add the fourth power of their common difference. Show that the result is a perfect square.
@BryanLu05 жыл бұрын
Instead distributing at 4:18 u = x^2 + 3x + 1 (u - 1)(u + 1) + 1 = u^2 So the root is x^2 + 3x + 1 = 251501
@blackpenredpen5 жыл бұрын
Bryan Lu omg that cat!!!!
@AmitBentabou5 жыл бұрын
Or even u=x^2+3x, then u^2+2u+1
@matias123815 жыл бұрын
digno de nyan cat, jajajajaj
@mattat38475 жыл бұрын
My life is a lie. I thought u subbing was only for integrals
@RunstarHomer5 жыл бұрын
@@mattat3847 nah man, sub whenever it makes the problem simpler
@sethdon11005 жыл бұрын
Olympic math taught me that insanely hard problems often had elegant solutions, this is no exception.
@blackpenredpen5 жыл бұрын
: ))))
@hafizh84614 жыл бұрын
@@leif1075???
@hemandy944 жыл бұрын
@@leif1075 people like these are called problem solvers...
@drudi14 жыл бұрын
@@leif1075 well it took me about 5min to solve it so I think is not impossible to solve. All of this types of equations where you have 4 consecutive numbers multipled are done like this
@jayasri67644 жыл бұрын
Lol,This problem is actually super easy,(Every single Olympiad contestant would have solved this question,at some point of their life) .Insanely hard problems need not have simple solutions . That's a downside of the math Olympiad .They make you expect difficult problems have simple solutions.(Although,most imo contestants don t fall for this fallacy).Real insanely hard problems have not been solved by anyone,yet.
@threadeater3455 жыл бұрын
1990: we'll have flying cars by 2019 2019: 2=1+1, wow I'm a genius
@blackpenredpen5 жыл бұрын
LOL
@ghotifish18384 жыл бұрын
2+2 is 4, minus one that's three quick maths
@Kyanzes4 жыл бұрын
Flying cars... you can't even have a sharpie that could change color. Say, red and black.
@santinodemaria28184 жыл бұрын
@@ghotifish1838 topical meme reference
@unutentediyoutube32824 жыл бұрын
Well it can also be 2=500-498
@Hypoli4 жыл бұрын
My last words whispered in a final breath : "Don't forget the +1"
@ሰላምሰይጣን3 жыл бұрын
😂
@68plus1.2 жыл бұрын
LMFAOOO
@naiknaik88122 жыл бұрын
He never resumed the video
@isaacqian-e3d5 ай бұрын
He added the one wdym 🧐
@leagueplays21005 жыл бұрын
i put it in my calculator and got 251501, that was easy
@bowtangey68305 жыл бұрын
Boo!
@Netherexio4 жыл бұрын
@The Balton American calculators are beasts
@paradox92654 жыл бұрын
@@Netherexio Agreed but Americans aren’t
@Netherexio4 жыл бұрын
@@paradox9265 What do you mean?
@СвятославИерусалимов3 жыл бұрын
It was easy, but not so beautiful like this)
@blackpenredpen5 жыл бұрын
Did you know that 2 = 1 + 1?? I bet not! jk : )
@williamadams1375 жыл бұрын
blackpenredpen No i don’t, i need a calculator to this
@snejpu25085 жыл бұрын
That's pretty funnt, but sometimes such things are the most difficult to see, for example: we have f(x)=x^4+8x^3+18x^2+8x+17, and a question, for which x, the function f(x) is a prime. You can check infinitely many cases and never know the answer, but what makes this question easy (but on the other hand is not so obvious), is that 18=17+1. Because then we have (x^2+1)(x^2+8x+17), which has to be a prime. One of them has to be = 1, the other one has to be some prime then... We are left with only 2 cases, because we know, that 18=17+1. : )
@theolbiterator54085 жыл бұрын
No but I knew 2= 0.9+1.1.
@chaitanyagadekar50255 жыл бұрын
I Known 2+2 = 5
@clubstepdj5 жыл бұрын
What i know is 5/2 = 2 with int data type
@mr.n19335 жыл бұрын
Dafuq did i jusf watch.i lost it when the 2=1+1
@executorarktanis23234 жыл бұрын
You are not nerdy enough
@maheshagrawal77795 жыл бұрын
no 2=1+1/2+1/4+1/8+1/16... you have got many misconceptions blackpenredpen!!!
@iabervon5 жыл бұрын
When he writes 1, he's obviously just abbreviating 1/2+1/4+1/8+1/16+...
@InDstructR5 жыл бұрын
@@iabervon and when he writes 1/2 he's abbreviating for 1/4+1/8+1/16+...
@agces20015 жыл бұрын
@@InDstructR And when he writes 1/4 he's abbreviating 1/8 + 1/16 + 1/32+...
@InDstructR5 жыл бұрын
@ki kus won't stop me, And when he writes 1/8 he's abbreviating 1/16+1/32+1/64+1/128+...
@shounakghosh85955 жыл бұрын
Whoa that converged quickly
@tanmay80173 жыл бұрын
I remember solving this exact question in my JEE ( Mains ) exam.
@classicmelodyvetrivel7102 жыл бұрын
@Sanat R mains usually has easy questions
@Avighna2 жыл бұрын
@Sanat R - Study Vlogs Sure, yeah, "easy question" 😬
@Avighna2 жыл бұрын
@Sanat R - Study Vlogs Woah, really? What kinda questions do they ask? Could you send me a link?
"If you're using a calculator, why are you watching this video?" Sanity check.
@blackpenredpen5 жыл бұрын
hahahahaa
@andrel82433 жыл бұрын
I am a calculator, not a person
@mysticdragonex8153 жыл бұрын
*laughs in Shakuntala Devi
@rd83965 жыл бұрын
Take x ^2 + 3x = a Then in step 2 a(a+2) + 1 a^2 + 2a + 1 = (a+1)^2
@mat1305h5 жыл бұрын
Yes much easier, and you see it imediatly too.
@Polarspy5 жыл бұрын
was about to say this, i think it's a lot more intuitive
@milanmitreski76575 жыл бұрын
Isn't it beautiful how one problem can be solved in diffrent ways, even if the idea and the method are nearly the same. That's why we love maths.
@sanjaisrao4845 жыл бұрын
@@milanmitreski7657 Yes
@akshetpatial54665 жыл бұрын
You extra smart boy the time required here will be same
@tiborgrun69635 жыл бұрын
Not only 2 = 1+1, but also 0 = 1-1. From the second row: (x^2+3x+1-1)(x^2+3x+1+1)+1 and per the third binomial equation = (x^2+3x+1)^2 -1^2 +1 = (x^2+3x+1)^2
@etemkaandelibas36495 жыл бұрын
I didn't understand. Where did you use binomial expansion
@jinja31135 жыл бұрын
0 = 1-1 1 = 1*1 2= 1+1
@yogeshpathak735 жыл бұрын
I didn't see any binomial here... But what i see is that you used the form (a+1)(a-1) + 1 = a^2 - 1 +1= a^2
@Bayerwaldler4 жыл бұрын
@@yogeshpathak73 I think Tibor Grün is from Germany. In German school curriculum the formula (a+b)*(a-b) = a^2 - b^2 is known as 3. binomial formula. b=1 is a special case.
@yogeshpathak734 жыл бұрын
Oh ok... Didn't know that. Thanks.
@DatSwif4 жыл бұрын
This is beautiful. I've been looking at it for five hours now
@dr3w1995 жыл бұрын
Nice. I did it this way: Assume that the expression is a square number so: x(x+1)(x+2)(x+3)+1 = n^2 x(x+1)(x+2)(x+3) = n^2 - 1 x(x+1)(x+2)(x+3) = (n+1)(n-1) What I did then is realise that the factors of the product on the right differ by 2. Playing around you can find that: x(x+3) = x^2+3x = n-1 (x+1)(x+2)=x^2+3x+2 = n+1 So n = x^2 + 3x + 1 Not as neat as your method though! Thanks for the video
@juanbomfim225 жыл бұрын
OMG ive almost done it completely. i just stopped at (n+1)(n-1) lol WD! i mean 'not that almost' lmao
@joshuamason22275 жыл бұрын
How do I play around with it
@dr3w1995 жыл бұрын
@@joshuamason2227 Well you have the product of 3 binomials and a monomial for which we can multiply in any order. If you try a few cases, or think about it you spot that x(x+3) and (x+1)(x+2) have a difference of 2.
3:20 I solved it differently. Let y= x^2+3x. Then substitute y into the expression making y(y+2)+1, distribute so y^2+2y+1 and that is a perfect square of (y+1)^2. Here, the square root and exponent cancel each other leaving y+1, sub back in x and then easily find the answer :)
@matthewmanzanares67982 жыл бұрын
this is also what I did and I think that this is a bit better because you don't have to split 2 into 1 + 1 and do the rest
@cheesecircle3033 Жыл бұрын
That's what I did as well
@TheS1lentX5 жыл бұрын
Jeez thats smart *proceeds to use the calculator to prove that 251501 is the right answer*
@thatssokwekwe2 жыл бұрын
I expressed it as sqrt((501.5-1.5)(501.5-0.5)(501.5+0.5)(501.5+1.5)+1) You get two a^2-b^2 expressions that you can multiply out, add the 1, and then factor into a squared quadratic expression Very neat and, as someone mentioned elsewhere, it generalizes to “1 plus the product of any four consecutive integers is a perfect square”
@detachedmars1585 жыл бұрын
You can also put a +1-1 inside the x^2+3x bracket and it'll be in the form of (a+b)(a-b).
@kilindogma97115 жыл бұрын
that's what i thought he was gonna do as well but what he did was cool as well.
@ssdd99115 жыл бұрын
why?
@iabervon5 жыл бұрын
Yeah, (x-1)(x+1)+1=x^2-1^2+1 seems easier to find than multiplying out exactly the right portion of the big expression.
@isaacdeutsch25384 жыл бұрын
I chose to make x = 502, which ends up yielding a nice difference of squares and a two term quadratic, which is much easier to distribute. The quartic you get has a palindromic pattern reminiscent of pure binomial coefficients, making it tempting to say the golden ratio is a root. It is, in fact, a root, so synthetically divide the quartic by the golden ratio identifying polynomial, x² - x - 1. You end up with the golden ratio identifying polynomial again, meaning that the original quartic in that square root is (x² - x - 1)², so cancel the power and the root. Plug 502 back in for x, some quick multiplying and subtracting by hand and you've got 251501.
@asa-ze1kn5 жыл бұрын
I'm only in 8th grade Algebra 1 but I was using variables to find how some of your factorizations works. You went from (x^2+3x)(x^2+3x+2)+1 to (x^2+3x)(x^2+3x+1)+(x^2+3x+1). What I did was set (x^2+3x) to a variable (a). (a)(a+2)+1 a^2+2a+1 (a+1)(a+1) Now substitute back in. (x^2+3x+1)(x^2+3x+1) When in doubt use variables..
@trueriver19505 жыл бұрын
Yes, that's using even more algebra than BPRP did.
@zocker25865 жыл бұрын
Well yes because using the variables is actually the logic behind the solution, it's just that it was invisible throughout the process :D
@baranibarani49705 жыл бұрын
Where r u from?
@sanjanabiswas97744 жыл бұрын
Agreed! Variables always help to proceed the solution.
@enricomassignani4 жыл бұрын
I put x=500 but multiplied everything. In the end i got to sqrt((x+y)^2) with x=500 and y=501^2
@blackflash99355 жыл бұрын
5:48 “Back in my day kids would use *ALGEBRA* but now their brains are rotting from these darn *CALCULATORS* ”
@almightyhydra5 жыл бұрын
3:20 just put y = x^2 + 3x, then you have y(y+2) + 1 = y^2 + 2y + 1 = (y+1)^2. So the answer is y + 1, or x^2 + 3x + 1.
@cypherx72475 жыл бұрын
I also did it in this way...but that way was also fine...its all about which method comes in your head first
@lasergamer28693 жыл бұрын
Dang that’s genius
@star_ms2 жыл бұрын
Seemingly elementary problems can have wonderfully elegant solutions! All we need is to substitute a number with x, and the magic begins.
@lucasxue22112 жыл бұрын
i remember my math teacher asking me to prove that n(n+1)(n+2)(n+3) + 1 is always a perfect square given that n is an integer
@snatchngrab82623 жыл бұрын
The world needs more teachers like you. I'm more impressed by your teaching skills than any math. Much respect.
@agabe_89895 жыл бұрын
0:01 that's my life philosophy now
@bucinoulje75053 жыл бұрын
i watched this video this video right before my math competition and the same type of question came up on the task sheet. Thank you very much!
@bucinoulje75053 жыл бұрын
for those wondering the question was 202120212019(202120212021)(202120212023) all over 100010001 x (202120212021 squared +4)
@jekoddragon62275 жыл бұрын
now do it with CALCULUS
@davidappell31054 жыл бұрын
Why do you think this is funny?
@gabrielpinhal83254 жыл бұрын
@@davidappell3105 because suffering is funny
@sanchit61073 жыл бұрын
@@davidappell3105 Its FUNI
@pfever5 жыл бұрын
Sorry...Time over! give me your exam!
@martinepstein98262 жыл бұрын
Nice factoring method but it might have taken me a while to spot. Multiplying out and factoring isn't so bad (x - 1)x(x + 1)(x + 2) + 1 = (x^2 - 1)(x^2 + 2x) + 1 = x^4 + 2x^3 - x^2 - 2x + 1 = (x^2 + bx +- 1)^2 = x^4 + 2bx^3 + (b^2 +- 2)x^2 +- 2bx + 1 We see this works if b = 1 and c = -1 so the answer is 501^2 + 501 - 1 = 500^2 + 2*500 + 1 + 500 = 251501
@SanjayKumar-wh6cd Жыл бұрын
Another nice solution is to assume x=501.5 And rewrite the equation which would give x⁴-(5/2) x²+(9/16) +1 which is basically (x²-5/4) ² The square and square root will cancel and give x²-5/4 Taking lcm would give us ((2x)² - 5) /4 (2x)²=1003² which can be computed very easily as 1003=1000+3 And then we just have to subtract 5 and divide by 4
@imadkhan18255 жыл бұрын
You can also this as x^2+3x=t and expression would become t(t+2)+1 =(t+1)^2 this que came in practice test for jee last week And guess what i solved that 😎😎😎👍👍
@SawkTheFighter132 жыл бұрын
Why are your videos so entertaining? I'm so glad I came across this channel.
@ozonejgs28875 жыл бұрын
I am so impressed with myself, I actually used the same method you did before watching the video =D
@blackpenredpen5 жыл бұрын
Jan Wrobel nice!!!!
@yannisdekonoha3 жыл бұрын
When he drops the "Check this out", you know crazy stuff will happen on the board
@LudwigvanBeethoven25 жыл бұрын
Every body knows 1+1=2 but i know 1+1 =/= 3
@blackpenredpen5 жыл бұрын
♫♪Ludwig van Beethoven♪♫ Hahahhaha
@jgsh80623 жыл бұрын
I’ve got you all beat with 1+1 > 0
@JDguy112223 жыл бұрын
@@jgsh8062 nah mine's better 1+1≠1+1
@laudine8785 жыл бұрын
Doing a PhD in Literary Studies, but stuff like this is why I absolutely love maths ♥
@MrShad5 жыл бұрын
What a incredible content. Im a student of math (i'll be a teacher in the future) from Brazil. Thank you so much for sharing knowledge!
@-Mohammed_S4 жыл бұрын
Your explanation is awesome . I like your teaching very much. Thanks
@DavidS-qn3jm5 жыл бұрын
I did assume there was a nice solution, but expanding under the root to get x^4 + 6x^3 + 11x^2 + 6x + 1 was pretty easy, and then matching coefficients in (x^2 + ax + 1)^2 was straightforward too. But yeah, the main thing is to replace 500 by x. I don't think I could intuitively see which two of the brackets would make it easier, and I'm not sure that's a better method than expanding the whole thing to only 4 terms (plus the one on the outside).
@tanmaygupta77788 ай бұрын
3:43 If we assume x^2+3x to be t we get t + 1 whole squared which is a lot easier
@ammardaffa5 жыл бұрын
I know this kind of the prob, i use (n+1)(n+2)-1
@ultrio3253 жыл бұрын
Just wanted to say after some work, some variable assigning and a lucky coincidence later, I found the answer! My steps: Let a=500 Expand a(a+1)(a+2)(a+3) to a^4+6a^3+11a^2+6a+1 Complete the square (or the fourth in this case): a^4+4a^3+6a^2+4a+1+2a^3+5a^2+2a =(a+1)^4+2a(a^2+2a+1+.5a) =(a+1)^4+2a((a+1)^2+.5a) =(a+1)^4+2a(a+1)^2+a^2 Observe this follows the perfect square structure. Therefore: (a+1)^4+2a(a+1)^2+a^2 =[(a+1)^2+a]^2 Square rooting gives: (a+1)^2+a a^2+3a+1 By substitution: a^2+3a+1 =250000+1500+1 =251501
@eannacoleman9572 жыл бұрын
I love the explanation, though I did it a bit differently. When I got to the second line, I substituted (x²+3x) as y and found that that worked much simpler than distributing 2 as 1+1.
@tempomi7603 жыл бұрын
Blew my mind! Earned yourself a new subscriber! Keep up the good work!👍
@jdsingh36075 жыл бұрын
Now this video makes me like algebra
@FermionClasses3 жыл бұрын
kzbin.info/www/bejne/jomVdXxvepatjJo
@cococh36074 жыл бұрын
I got the point. Convert the number into variables. For example 500=x or 2=1+1 = a (convert what you want) Thank you for the useful tips... I realized that the algebra is so amazing at the complicated situation.
@msmmath875 жыл бұрын
Really good solution! GOOD Teacher👍
@ugursoydan81873 жыл бұрын
a very good perspective and a very good solution. thank you!!!
@LiegeNorth3 жыл бұрын
this guy is a genius!
@Hecti1615 жыл бұрын
The factorization was more if you defined a variable "a" that was equal to x^2+3x Because since you multiply and you have left (X^2+3X)(X^2+3X+2)+1 With the variable "a" you had left (a)(a+2)+1 And that is equal to (a^2+2a+1) And that is factorizable as (a+1)^2 Greetings from Mexico
@hellopeter1215 жыл бұрын
What Everybody knows : 1+1=2 What BPRP knows : 2=1+1 . . . . . What I know : 1+1=2 and 2=1+1 😇😇😇😇😇😇😇😇😇😇😇
@adrianau52315 жыл бұрын
Actually why not: √(500)(501)(502)(503)+1 = x 500.501.502.503 +1 = x² 500.501.502.503 = x²-1 (500.503) (501.502) =(x-1)(x+1) 251500 × 251502 = (x-1) (x+1) x = ±251501 but we have to reject -251501 because it is negative in a square root
@paawanjethva5 жыл бұрын
Everybody knows e^{iτ}=1 . . . . But I know 1=e^{iτ}
@blackpenredpen5 жыл бұрын
Nice!!!
@paawanjethva5 жыл бұрын
@@日本人じゃありません That's e^{iπ}. τ=2π
@fgvcosmic67525 жыл бұрын
My mans using tau! Up top!
@peterg6445 жыл бұрын
@@日本人じゃありません he's using tau not pi
@ridwansetiadi83935 жыл бұрын
If somebody can't understand 3:59, you can try another method; you can also substitute the line 3 of 'Obs' into another variable, for example: y If: y = x²+3x Then the equation becomes: = (y+2)(y)+1 = y²+2y+1 Factorize that into this: = (y+1)² So, sqrt[(y+1)²] = y+1 Since y = x²+3x The equation becomes: = x²+3x+1 Since x = 500 The result is: = (500)²+3(500)+1 = 251501
@DarkRedZane4 жыл бұрын
I have never been so hyped at 2 = 1+1 before.
@gedlangosz11275 жыл бұрын
Solved it! For a clean solution to exist I assumed that x·(x + 1)·(x + 2)·(x + 3) + 1 is a perfect square for any integer x. Playing around with x = 1 & x = 2 it is quickly apparent that x·(x + 3) + 1 is a contender for the solution. It is easy to prove that this is the solution by expanding out [x·(x + 3) + 1]² and showing that it is equivalent to x·(x + 1)·(x + 2)·(x + 3) + 1 I doubt I would have spotted the algebraic manipulation that BPRP used without knowing the solution first. I also learn something new i.e. the product of four consecutive integers plus 1 is always a perfect square. Thank you for the video - I enjoyed this one.
@kinyutaka5 жыл бұрын
I'm doing this on the toilet, so I only hope I'm starting correctly, with (500)(502)=(501²-1) and (501)(503)=(502²-1) But then again, we could cheat and go with (501)(502)=(501½²-¼) and (500)(503)=(501½²-9/4)?
@backyard2825 жыл бұрын
you can also use substitution x^2+3x = t and you get t(t+2)+1=t^2+2t+1=(t+1)^2 and replace t: (x^2+3x+1)^2
@joaoaugusto92214 жыл бұрын
You could also do like: Consider 501 as “x” and 502 as “y” You can rewrite the sentence like: (x-1).(x+1).(y-1).(y+1) +1 That’s equal to: (x^2 - 1^2).(y^2 - 1^2) +1 Or (501^2 - 1).(502^2 - 1) +1 And there’s your answer xD!!
@ZiebartPatel5 жыл бұрын
A generalisation of the algebraic expression - (X)(X+1)(X+2)(X+2)+1= (Y)^2
@whyit4875 жыл бұрын
I love your videos about not using calculators (Like the Wolfram-Alpha video)! They're the best! Keep up the good work! It's nice going back to algebra sometimes...
@blackpenredpen5 жыл бұрын
Why It? Yea me too. I try to mix things up a bit.
@deathzonesimang80435 жыл бұрын
If you guys want to know the “secret”, it is if the sum of the digits in any number add up to a multiple of 3, it is divisible by 3. E.g 567: 5+6+7=18. 18 is a multiple of 3 thus 567 is divisible by 3.
@deathzonesimang80435 жыл бұрын
@Cerebro Spinal I was referring to the part at the end of the video
@dev.imperatus61055 жыл бұрын
Hmmm ive got an easier way when you use 1 + 1 instead of 2 Here is how I do according to you: (x^2+3x+2)(x^2+3x+1) =(x^2+3x)^2 +2 then √((x^2+3x)^2 +2) = x^2+3x+1
@XWurstbrotX5 жыл бұрын
You can't solve squareroots of sums like that, eventhought your result is correct.
@jcb33934 жыл бұрын
I did it by recognizing that (x^2+3x)(x^2+3x+2) is easily simplified with a substitution of y=(x^2+3x+1). It simplifies to (y-1)(y+1) = y^2 - 1. Since we have a "+1" hanging out after the 4-term product, that gets rid of the "-1" in our simplified expression, yielding just y^2 under the radical sign. square root of y^2 = y. That means the solution is our substitution: y=(x^2+3x+1). Plugging in 500 for x gives us 251501.
@-a56245 жыл бұрын
I know this is not related to this video but I wanted to post this on a new video so you might see it :) your trick for integrals of thinking "wouldn't it be nice if..." has helped me so so much, so thank you :) love your videos!
@blackpenredpen5 жыл бұрын
Awww thank you!!!!!
@mesballo22243 жыл бұрын
Your way to solve this is pretty AWESOME!! First I multiplied all together, i got x^4 + 6x^3 + 11x^2 + 6x + 1 then i calculate this polynomial for x=1 x=2 x=3 ....all the time i got a square!! I was really surprise!! I didn't expect x(x+1)(x+2)(x+3)+1 to be a perfect square for all x at all!!! This is incredible!! Thanks for sharing your knowledge you are very inspiring to me
@sadeekmuhammadryan48942 жыл бұрын
There are things to learn from each of your videos 😁❤️
@deadvirgin42810 ай бұрын
Well yes, that's the point.
@gaetanocantisani37625 жыл бұрын
I find the solution in a different way: k(k+1)(k+2)(k+3)=x^2-1 =(x-1)(x-2), and the difference between these number is 2; so multiplying k(k+3)=k^2+3k (k+1)(k+2)=k^2+3k+2 I have the numbers with desidered difference. So x=k(k+3)+1, having the result with substitution 500->k.
@aikenkazim53185 жыл бұрын
please give an example differentiation of complex functions
@ericli27235 жыл бұрын
An alternative way to solve it is by letting x = 501.5 and change the expression into sqrt((x - 3/2)(x - 1/2)(x + 1/2)(x + 3/2) + 1) The inspiration for this is difference of squares, simplifying gives. = sqrt( (x^2 - 9/4)(x^2 - 1/4) + 1) = sqrt( x^4 - 10/4(x^2) + 9/16 + 1) = sqrt(x^4 - 5/2(x^2) + 25/16) = sqrt((x^2 - 5/4)^2) , *factors nicely, perfect square* = x^2 - 5/4 = (501.5)^2 - 1.25 = 251501
@cfgauss714 жыл бұрын
Except the 501.5^2 part is not so pleasant by hand. Not the best alternative.
@Kino-Imsureq5 жыл бұрын
BPRP know 2 = 1+1 I know 2 = 2 what happened to the comment button its gray
@jinja31135 жыл бұрын
I know 2 = two
@reza12193 жыл бұрын
if only most teachers were like this guy, it actually makes me wanna learn math again and I'm 29 years old! not gonna lie that did look fun for some reason.
@mango4174 жыл бұрын
"And now, here's the deal"… You know that when he pronounces that phrase things are 'bout to get complicated.
@denisikonomi20193 жыл бұрын
If you guys want a tip to make the solution simpler Set 501 as x instead of 500 That way (x-1)(x)(x+1)(x+2)+1 is under the square root Which many can see the only tedious multiplying we’d have to do is (x^2 - 1)(x^2 + 2) You’ll then find the equation to be x^2 + x - 1 Which gives the same result Just helps save space and makes the problem less tedious
@noverdy5 жыл бұрын
Everybody know e^2.pi.i = 1 . . But I know 1 = e^2.pi.i
@mundane38095 жыл бұрын
Wrong it's - (e ^ pi × i)
@nikolas91055 жыл бұрын
@@mundane3809 Nice try but thats -1 ignoring your name
@mundane38095 жыл бұрын
@@nikolas9105 no e ^ ( pi × i ) = -1 So if you make -1 negative, it become positive.
@RunstarHomer5 жыл бұрын
@@mundane3809 you are correct but the original comment was also correct. e^2πi = 1.
@mundane38095 жыл бұрын
@@RunstarHomer oof yea it's actually correct. sorry for the mistake!
@SpongeDude85 жыл бұрын
More impressed with how someone came up with the question
@moosemoosington14412 жыл бұрын
Dude, I always had a good grasp on algebra as a kid and in highschool I always aced most algebra, but somehow my teachers (and I) missed this property of algebraic equations. So freaking cool. It has been nigh on 15 years since high school, but I am still learning new and cool algebra. Thanks so much blackpenredpen!
@谢天陈3 жыл бұрын
what about using x. First allow the equation equal to x, then square both sides and then both sides minus 1. We get (x+1)(x-1)=(500)(501)(502)(503). Then I found out that (500)(503)is two less than (502)(501) and the answer would be 500*503+1=251501. The last step can be done be simple calculation, no calculator needed.
@Mothuzad3 жыл бұрын
Shout-out to my colorblind fam who can never tell when he switches pens
@MrJdcirbo5 жыл бұрын
I multiplied everything out and got stuck... This is a brilliant solution. One day I will achieve this type of mathematical intuition. Lead the way, blackpenredpen!!!
@DriffPL5 жыл бұрын
I think you forgot about the absolute value; Square root of a 2nd power produces absolute value result because both positive and negative values are true.
@bttfish5 жыл бұрын
Dunkoro it is obvious that the number inside the square root is positive,so ignore the absolute value symbol
@tomerwolberg375 жыл бұрын
You could have made it simpler using the (a-b)(a+b)=a^2-b^2 formula. (x^2+3x)(x^2+3x+2)+1 = (x^2+3x+1-1)(x^2+3x+1+1)+1 = (x^2+3x+1)^2-1^2+1 = (x^2+3x+1)^2
@ishmeetsingh11465 жыл бұрын
Wow your method and my method are similar .....I had take the whole expression as y and then square it and then assume x to be 500 and multiplied and had taken x^2+3x to be z and at end I got y=z+1 that is y = x^2 + 3x + 1 and it's done
@vudomath4 жыл бұрын
At 3:45, you could also treat the first factor as (x^2+3x+1-1) so together with the second factor you have (x^2+3x+1-1)(x^2+3x+1+1) = difference of squares ((x^2+3x+1)^2 - 1. Plus the extra 1 on the outside you get the perfect square.
@黎真-e3f5 жыл бұрын
The conclusion of this question is : [ First number + second number ^2 ]
@martinteichert92095 жыл бұрын
the easier way would be to solve it symmetrically: lets say x equals 501,5 in this case.. then the product would be (x-1,5)(x+1,5)(x-0,5)(x+0,5)+1= (x^2-2,25)(x^2-0,25)+1= x^4-2,5*x^2+0,5625+1 which is obviously (x^2-1,25)^2
@enzoTHEferrari5 жыл бұрын
I understood everything until the bit at 4:35 - 5:04 What do you mean by "factoring out"?
@AE-rg5rc5 жыл бұрын
When a number repeats itself in an addition you can factor it out, basically do the inverse of distributive property. So we have x²+3x+1 repeating in both therms. You can factor it out and you will be left with x²+3x+1 ( x²+3x +1), equivalent to x²+3x+1( x²+3x) + x²+3x+1 (1)
@leif10755 жыл бұрын
@@AE-rg5rc but thats just squaring it and you don't have two of the sake expression..you don't jave twobx squared plus 3x plus 2 you only,have one
@ViratKohli-jj3wj5 жыл бұрын
@@leif1075 please Learn some math, this is for grade 6 atleast in asian countries.
@leif10755 жыл бұрын
@@ViratKohli-jj3wj I know some math, thanks very much..I had a valid question
@user-yg97f5hfvh5 жыл бұрын
You may substitute x^2+3x = t and make t(t+2)+1 = t^2+2x+1 so square root of t^2+2x+1 is t+1=x^2+3x+1(same)
@GodzillaFreak5 жыл бұрын
Just do the multiplication by hand.
@avisinha93312 жыл бұрын
Just say x^2+3x = y y(y+2) + 1 = y^2+2y +1 =( y+1)^2 Comes out of root as (Y+1) = x^2+3x + 1 And put the values
@alexsandroagustini7144 жыл бұрын
Him: Starts the video with 1+1=2 Me: *ok we are getting somewhere now
@curtisw0234 Жыл бұрын
Why not substitute y=x^2 + 3x then you can expand that to get y^2 + 2y + 1 = (y+1)^2. Perfect for cancelling out the square root