Dear Tejas, challenge ACCOMPLISHED! (Speed run, Uncut)

  Рет қаралды 1,126,144

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 1 700
@simpletn
@simpletn 6 жыл бұрын
You know shit got real when he pulls out the purple marker
@astellagaming
@astellagaming 5 жыл бұрын
account hahhahaha flyyyy
@michaelroditis1952
@michaelroditis1952 5 жыл бұрын
Just made your likes evil
@HasanabiOOC
@HasanabiOOC 5 жыл бұрын
Hahaha
@stolen2952
@stolen2952 5 жыл бұрын
😂😂😂😂
@wjrasmussen666
@wjrasmussen666 4 жыл бұрын
Does he ever break out the plaid marker?
@angelmendez-rivera351
@angelmendez-rivera351 5 жыл бұрын
Just in case that anyone did decide to try to square the equation instead, 5 - x = (5 - x^2)^2, which would give you a quartic equation. Add to the equation the expression 4(x^2 - 5)y^2 + 4y^4 to obtain 4y^2·x^2 - x + 4y^4 - 10y^2 + 5 = (x^2 - 5 + 2y^2)^2 = 4y^2·x^2 - x + (4y^4 - 20y^2 + 5). Then divide by 4y^2 to get (x^2/2y - 5/2y + y)^2 = x^2 - x/2y^2 + (y^2 - 5 + 5/2y^2). We want x^2 - x/2y^2 + (y^2 - 5 + 5/2y^2) to be a perfect square, which implies we want 1/4y^4 = y^2 - 5 + 5/2y^2, or 1 = 4y^6 - 20y^4 + 10y^2, or 4(y^2)^3 - 20(y^2)^2 + 10(y^2) - 1 = 0. Then, we must solve this cubic for y^2. Thus, we really want to solve 4z^3 - 20z^2 + 10z - 1 = 0 and let z = y^2. To solve this, divide by 4 to get z^3 - 5z^2 + (5/2)z - 1/4 = 0. Let z = a + 5/3, so (a + 5/3)^3 - 5(a + 5/3)^2 + (5/2)(a + 5/3) - 1/4 = a^3 + 5a^2 + 25a/3 + 125/27 - 5a^2 + 25a/3 + 125/9 + 5a/2 + 25/6 - 1/4 = a^3 + 115a/6 + 1225/54 = 0. This is a depressed cubic equation. Now, notice that (u + v)^3 + 3uv(u + v) - (u^3 + v^3) = 0. Thus, if a = u + v, then 3uv = 115/6 and u^3 + v^3 = -1225/54. u = 115/9v, so u^3 + v^3 = (115/9)^3/v^3 + v^3 = -1225/54, which implies v^6 + 1225v^3/54 + (115/9)^3 = (v^3)^2 + (1225/54)(v^3) + (115/9)^3. Then v^3 = {-(1225/54) + sqrt[(1225/54)^2 - 4(115/9)^3]}/2 or {-(1225/54) - sqrt[(1225/54)^2 - 4(115)/9)^3]}/2. Regardless of rhe choice, u^3 will be equal to its conjugate. This implies that a = cbrt[{-(1225/54) + sqrt[(1225/54)^2 - 4(115/9)^3]}/2] + cbrt[{-(1225/54) - sqrt[(1225/54)^2 - 4(115)/9)^3]}/2], which implies z = -5/3 + cbrt[{-(1225/54) + sqrt[(1225/54)^2 - 4(115/9)^3]}/2] + cbrt[{-(1225/54) - sqrt[(1225/54)^2 - 4(115)/9)^3]}/2]. Simplifying this would be useful. 54^2 = 9^2·6^2 = 3^4·3^2·2^2 = 2^2·3^6, while 9^3 = 3^6. To get the common denominator, the inner radicand would equal [(1225)^2 - (115·4)^2]/(54)^2 = [(1225)^2 - (460)^2]/54^2. (1225)^2 - (460)^2 = (1225 - 460)(1225 + 460) = (1 685)(765)/54^2 = 337·153·5^2/54^2 = 337·17·15^2/54^2 = 5 729·(15/54)^2. This leaves the outer cubic radicands -[1225 - 15·sqrt(5 729)]/108 and -[1225 + 15·sqrt(5 729)]/108 respectively. As you can see, this is a treacherous path, and we are dealing with expressions far more complex than what was shown in the original problem and its solutions. Clearly, this is not the way to solve, and anyone would have given up halfway through.
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Wow!!!
@notdarkangelu
@notdarkangelu 2 жыл бұрын
Man, one like for your commitment even though I didn't understood a single fucking line 🤣
@petachad8463
@petachad8463 2 жыл бұрын
I gained nothing from reading this.
@lcex1649
@lcex1649 Жыл бұрын
I assumed it can be written as the product of two trimonials: (ax^2 + bx + c)(dex^2 + ex + c). I solved it with a system of equations, letting c=-4 so that every variable is an integer. This led to (x^2 - x + 4)(x^2 + 5x - 5)=0 and solving x from there was pretty straightfoward
@flashbang8673
@flashbang8673 Жыл бұрын
i aint readin allat🔥🔥
@barak363363
@barak363363 6 жыл бұрын
*and here I just thought to power 2 both sides like an innocent child..*
@einsteingonzalez4336
@einsteingonzalez4336 6 жыл бұрын
¡Que vergüenza! (What a shame!)
@koala2587
@koala2587 6 жыл бұрын
Same
@justinsantos5751
@justinsantos5751 6 жыл бұрын
Why is it wrong? I haven't tried it yet
@Gal_Meister
@Gal_Meister 6 жыл бұрын
@@justinsantos5751 it's right, u can square both sides and then use polynomial division. Answers are the same
@SebastienPatriote
@SebastienPatriote 6 жыл бұрын
You technically could as there actually is a formula to solve fourth degree equations. I don't recommend it however...
@gabrielh5105
@gabrielh5105 4 жыл бұрын
The teacher during the whole class: stories of his life, personal thoughts, etc The teacher when I leave 4 mins to go to the bathroom:
@sbypasser819
@sbypasser819 3 жыл бұрын
best joke ever
@kepler4192
@kepler4192 3 жыл бұрын
B-but the stories are fun to hear!
@shambachakrabortyofficial1611
@shambachakrabortyofficial1611 2 жыл бұрын
😂😂😂😂😂
@tumak1
@tumak1 6 жыл бұрын
Excellent solution ...nicely explained at 314 words per second! Cheers
@blackpenredpen
@blackpenredpen 6 жыл бұрын
tumak1 : )
@mchappster3790
@mchappster3790 6 жыл бұрын
Is this a pi joke lmao?
@Rekko82
@Rekko82 6 жыл бұрын
My math teacher wrote 314 faster than him though. I still love math despite facing a speed writer in math lessons in high school. He used right hand to write and the left hand to clean at the same time.
@ayazraza8287
@ayazraza8287 6 жыл бұрын
best comment with a good sarcasm
@cheshstyles
@cheshstyles 5 жыл бұрын
@@Rekko82 no way
@cirnobyl9158
@cirnobyl9158 4 жыл бұрын
This problem has a bit of notoriety in the math olympiad community for having a funny alternate solution: sqrt(5 - x) = 5 - x^2 Square both sides 5 - x = 5^2 - 2x^2*5 + x^4 Rewrite this as a quadratic equation. But wait, how can we make a quadratic when there's an x^4 term? The key is to not write it as a quadratic in the variable x; write it as a quadratic in the variable 5: 5^2 - (2x^2 + 1)*5 + x^4 + x = 0 Use the quadratic formula to solve for the variable 5: 5 = (2x^2 + 1 +/- sqrt(4x^2 - 4x + 1)) / 2 5 = x^2 + x or 5 = x^2 - x + 1 Finish by solving both quadratics. Remember to throw out the two extraneous solutions where 5 - x^2 is negative, due to our first step.
@ethang8250
@ethang8250 4 жыл бұрын
Thank you for widening our mathematical perspectives
@blackpenredpen
@blackpenredpen 4 жыл бұрын
Unbelievable! Thanks for this mind-blowing solution!
@mathfincoding
@mathfincoding 4 жыл бұрын
Who went straight here after watching the video inspired by this comment?
@CauchyIntegralFormula
@CauchyIntegralFormula 4 жыл бұрын
I always thought this video was about this solution, since it's pretty famous, so I never checked it out. I'm surprised to see it's not
@rabeakhatun2819
@rabeakhatun2819 4 жыл бұрын
nice man
@DarkMage2k
@DarkMage2k 6 жыл бұрын
The fabled purple pen was only mentioned in the legends. This video marks the speed of its glorious power to solve maths. On the hands of this man lies the power to overthrow deities.
@RahulSingh-zo7sm
@RahulSingh-zo7sm 5 жыл бұрын
Cool
@VoteScientist
@VoteScientist 5 жыл бұрын
Set playback speed to .75.
@atharvakapade
@atharvakapade 4 жыл бұрын
Yup it’s that of the legend
@dekaprimatiodeandra6679
@dekaprimatiodeandra6679 5 жыл бұрын
Teacher: you have 5 minutes before the exam begins Me: *watch this video*
@Mistyfgdf
@Mistyfgdf 5 жыл бұрын
OMEGA LUL you made a mistake
@sb-hf7tw
@sb-hf7tw 5 жыл бұрын
OMEGA LUL hilarious
@Saifthebest01
@Saifthebest01 5 жыл бұрын
Misty Diablo I would've just looked at memes which would backfire cause I would be distracted while writing cause I'd keep internally laughing
@amanpandey2714
@amanpandey2714 5 жыл бұрын
Don't u have to write the exam
@danilov114
@danilov114 4 жыл бұрын
Call in a sub.... That is better...
@77Chester77
@77Chester77 6 жыл бұрын
black pen, red pen, blue pen, purple pen,...this is getting out of hand!!!
@Theraot
@Theraot 6 жыл бұрын
There is also a green pen, and am hoping the orange pen will make a return in a few days
@leftysheppey
@leftysheppey 6 жыл бұрын
there was no black pen in this video. maybe he's taking a holiday
@77Chester77
@77Chester77 6 жыл бұрын
@@leftysheppey well, there was Mr.blackpenredpen :-)
@sebastiancastro7382
@sebastiancastro7382 5 жыл бұрын
Sounds like Goku's hair color 😂
@bagusamartya5325
@bagusamartya5325 5 жыл бұрын
I might be too late but do you mean.. Getting out of pen
@Jamesz
@Jamesz 5 жыл бұрын
i’m beginning to feel like a rap god, rap god
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Hahaha
@jesusshrek1271
@jesusshrek1271 5 жыл бұрын
All my people from front to the back knot back knot
@avinavverma2315
@avinavverma2315 5 жыл бұрын
@@jesusshrek1271 back nod*
@jesusshrek1271
@jesusshrek1271 5 жыл бұрын
@@avinavverma2315 soori for ma engris. Nyan nyan
@avinavverma2315
@avinavverma2315 5 жыл бұрын
@@jesusshrek1271 it ish awkay ma frind dunt wiry
@mairisberzins8677
@mairisberzins8677 6 жыл бұрын
"It's not good, it's bad it's dangerous, Infact, its a trap."
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Mairis ̶ʙ̶ʀ̶ɪ̶ᴇ̶ᴅ̶ɪ̶s̶ Bērziņš yup yup
@Theraot
@Theraot 6 жыл бұрын
captain ackbar approves
@itsbk6192
@itsbk6192 5 жыл бұрын
Straight bars
@HPD1171
@HPD1171 5 жыл бұрын
Admiral X-bar
@chandrabitpal9151
@chandrabitpal9151 4 жыл бұрын
@@blackpenredpen how many languages do u know u also know maths and all the other science subjects maybe at Olympiad level...😶😶😶
@NoOne-ky1er
@NoOne-ky1er 5 жыл бұрын
'How do we do this? Let pull up the purple pen again.' Thanks, now I just need to buy a purple pen for my exams.
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Hahaha nice and thanks!
@jimjam1948
@jimjam1948 6 жыл бұрын
This is the reason why i subscribed. BPRP probably did it in his head in ten second but took so long just because he had to explain it to us.GREAT AS USUAL.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Jamie Handitye : ). Thank you.
@honaku95
@honaku95 6 жыл бұрын
I think he probably fell for the trap the first time he tried it.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Cuong Hoang no. I am a guy with experience. : )
@ireallyhatemakingupnamesfo1758
@ireallyhatemakingupnamesfo1758 5 жыл бұрын
blackpenredpen the sheer top energy in the comment, wow, we stan
@chandrabitpal9151
@chandrabitpal9151 4 жыл бұрын
@@blackpenredpen true u r the man who created world record right!!
@shaankumar2636
@shaankumar2636 5 жыл бұрын
I checked twice if the video was on 2x speed
@ElColombre27360
@ElColombre27360 6 жыл бұрын
How fast... Did you get MATH-ANPHETAMINE?
@ricardobrambila1842
@ricardobrambila1842 6 жыл бұрын
Crystal Math
@jashsamani2487
@jashsamani2487 6 жыл бұрын
10 seconds
@kummer45
@kummer45 2 жыл бұрын
It's not about the speed. It's about the accuracy that things happens. Bounded above increasing sequences comes into this. The topic is highly advanced. He explains this in another video. Nested radicals is one thing but nested alternating radicals is another subject on itself. We need more content creators like this that raises interest in real analysis and higher advanced topics in mathematics. Teachers like him are widely needed.
@Jn-xf3tt
@Jn-xf3tt 6 жыл бұрын
When you look away for one second in class
@vinaykumar2030
@vinaykumar2030 4 жыл бұрын
lol underrated
@shajahan1064
@shajahan1064 4 жыл бұрын
Lmao
@proloycodes
@proloycodes 3 жыл бұрын
2^8th like!
@shivamchouhan5077
@shivamchouhan5077 3 жыл бұрын
(3×91)th like
@parsecgilly1495
@parsecgilly1495 2 жыл бұрын
hi, I have found another solution to this problem, let's say, which is based on geometric and symmetry considerations: in fact we consider the curves in the Cartesian plane represented by the left and right sides of the equation: y = 5-x ^ 2 y = sqrt(5-x) the first is a parabola, with the vertex on the y axis, the second, is the same parabola, but rotated by 90° thus having the vertex on the x axis. It is easy to verify (you can use a program that plots the curves in the Cartesian plane) that the 4 solutions of the equation are the 4 points of intersection of the two parabolas; these 4 solutions are placed on a heart-shaped figure symmetrical with respect to the straight line y = x; it is easy to verify that the first pair of solutions lies precisely on this last line. therefore, to find the first pair of solutions, we can solve the following system of two equations: y = 5-x ^ 2 y = x substituting the second in the first, we obtain: x ^ 2 + x -5 = 0 which admits the two solutions x = (-1 +/- sqrt (21)) / 2 to find the second pair of solutions, it is observed that they are symmetrical with respect to the line y = x and are found on the line y = A-x, where "A" is a constant to be determined. Therefore, the constant "A" must satisfy the two systems of equations simultaneously: 1) y = 5-x ^ 2 y = A-x 2) y = sqrt(5-x) y = A-x eliminating the "y" from the two systems of equations and rearranging, we obtain two equations of second degree in the unknown "x" and in the variable "A": 1) x^2-x+A-5=0 2) x^2+(1-2A)x +A^2-5=0 but, since the two equations must provide the same solutions, this happens, if and only if the single terms of the equations are identical and this occurs only when A = 1, therefore, the second pair of solutions is found simply by solving : x^2-x-4=0 whose solutions are: x = (1 +/- sqrt (17)) / 2
@muhammad.2
@muhammad.2 21 күн бұрын
you wrote this so beautifully, perfect spacing, punctuation and capitalization. it was a joy reading this
@RichardWilliams-sx5kq
@RichardWilliams-sx5kq 5 жыл бұрын
“Let’s just focus on this part right here” *proceeds to circle the entire right side of the equation*
@Akea1243
@Akea1243 Жыл бұрын
he didnt circ- rectangle the minus
@ActicAnDroid
@ActicAnDroid 5 жыл бұрын
This is the first time I've ever slowed down a video just to understand it.
@blackpenredpen
@blackpenredpen 5 жыл бұрын
: )
@thomaswilliams5320
@thomaswilliams5320 6 жыл бұрын
Another way to solve this is to notice that two sides are inverse functions of eachother. The intersection of a function and an inverse function will lie on the line y = x. Therefore this can be solved simply by setting either side equal to y = x.
@MichaelRothwell1
@MichaelRothwell1 6 жыл бұрын
Excellent observation. Algebraically, this is f(x) = f^(-1)(x) => f(f(x)) = x. For a solution we can solve f(x) = x. This is what BPRP did. But there could in theory be more solutions, depending on f. E.g. if f is self inverse, such as 1/x, then any x in the domain is a solution.
@MichaelRothwell1
@MichaelRothwell1 6 жыл бұрын
So your argument is not water tight. If the graph of f meets y=x, this also solves f equals its inverse. But for f equals its inverse at x, we just require both (x, y) and (y, x) lie on the graph of f for some y, not that y=x.
@kaimm8900
@kaimm8900 6 жыл бұрын
@@MichaelRothwell1 could we use his argument if we do have more information regarding the solution?, in diaphontine equations for example?
@NVDAbets
@NVDAbets 6 жыл бұрын
This observation is extraordinary. But how does it find the second solution? I can't seem to find it.
@thomaswilliams5320
@thomaswilliams5320 6 жыл бұрын
Jifu Wen I couldn't either, since technically 5-x^2 is only the inverse function of root(5-x) for x > 0 and the other solution lies in the negative x.
@justin-7887
@justin-7887 5 жыл бұрын
Not only fast but also fairly well explained. Good job.
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Justin - thanks!
@Treegrower
@Treegrower 6 жыл бұрын
Changing the x = sqrt(5 - sqrt(5 - ....)) to simply x = sqrt(5-x) was such a clever move, I never would have thought of that! Who would of thought you could simplify it to a quadratic equation. Well done.
@kali3828
@kali3828 6 жыл бұрын
Would have*
@user-zb8tq5pr4x
@user-zb8tq5pr4x 5 жыл бұрын
actually once you've done a couple of infinite sums like these it is really easy to notice this. Nothing you would have easily thought of by yourself, but hey, that's what learning is for
@brendanwoods4773
@brendanwoods4773 5 жыл бұрын
I don’t get why, can someone explain?
@stevefrei2588
@stevefrei2588 5 жыл бұрын
@@brendanwoods4773 x= one half the square root of 5
@peacewalker991
@peacewalker991 2 жыл бұрын
@@stevefrei2588 suuuper old post I know - but what is the reason for this? Why can you do the substitution, is this just something you need to know?
@Tassdo
@Tassdo 5 жыл бұрын
Well, once you applied your first trick to get x^2+x-5 = 0, you could also square the original equation and factor this polynomial out, getting (x^2+x-5)(x^2-x-4). You can then easily find all roots (and discard the irrelelevant ones) (Neat trick btw)
@ogorangeduck
@ogorangeduck 5 жыл бұрын
we need more of this type of speedrun
@blackpenredpen
@blackpenredpen 5 жыл бұрын
OK!
@maxsch.6555
@maxsch.6555 5 жыл бұрын
Agreed
@ISoldßinLadensViagraOnEbayఔ
@ISoldßinLadensViagraOnEbayఔ Жыл бұрын
@@blackpenredpen Fun fact: x=1. The end.
@xenon1308
@xenon1308 5 жыл бұрын
This man can now reedem his "top 10 rapper Eminem is afraid to diss" reward
@Taterzz
@Taterzz 6 жыл бұрын
playing it at 2x for even faster math. there is no limit to this man, he diverges.
@MrPetoria33
@MrPetoria33 5 жыл бұрын
Never noticed you could solve algebraic equations recursively before. Neat.
@littlebigphil
@littlebigphil 5 жыл бұрын
Fixed point iteration and certain infinite continued fractions are similar. You do have to be careful you don't get a divergent limit when you do this though.
@MarcoMate87
@MarcoMate87 6 жыл бұрын
That irrational equation is equivalent to the system formed by the following: 5-x >= 0 5-x^2 >= 0 5-x = (5-x^2)^2 The first two inequalities are solved by -sqrt(5)
@manuelrojas9547
@manuelrojas9547 6 жыл бұрын
Why x_1 and ×_4 aren't acceptable? >.
@valeriobertoncello1809
@valeriobertoncello1809 6 жыл бұрын
@@manuelrojas9547 because if you plug them in you get negative values under the radical. They are indeed solutions but they're on the imaginary plane
@ashishpradhan9606
@ashishpradhan9606 4 жыл бұрын
Thanks bro
@think_logically_
@think_logically_ 4 жыл бұрын
Factorization wasn't really obvious. However this solution doesn't leave an open question for the alternating case. This is why I prefer it.
@Liamdhall
@Liamdhall 4 жыл бұрын
sqrt(5-x) and 5-x^2 are inverse functions of one another. A function and its inverse will always meet one another on the line y=x, therefore setting either sqrt(5-x) =x or 5-x^2 = x will produce the same solutions as the original equation to be solved.
@JM-sq3ic
@JM-sq3ic 2 жыл бұрын
This is a very pretty argument and avoids the risk of divergent series. Top thinking!
@goldfing5898
@goldfing5898 Жыл бұрын
This was understandable to me, in contrast to the original video. I would need a slow motion video. Is there the original version around, without speeding up?
@thecrazyeagle9674
@thecrazyeagle9674 Жыл бұрын
That's not the case though? Solving 5-x^2 = x gets us the wrong answer.
@Liamdhall
@Liamdhall Жыл бұрын
It gets the first solution where x>0, but you're right that it doesn't find the second one where x
@thecrazyeagle9674
@thecrazyeagle9674 Жыл бұрын
@@Liamdhall Haha, awesome you responded 3 years later 😀
@qmzp2
@qmzp2 6 жыл бұрын
Pro tip: Play at x0.75 speed
@itsalongday
@itsalongday 5 жыл бұрын
Pro tip: Play at x2 speed
@danielangulo2119
@danielangulo2119 5 жыл бұрын
Protip: MAKE SURE THE SYNTH AND THE VOCALS ARE IN THE SAME KEY. Anyone?
@sigvelandsem8669
@sigvelandsem8669 3 жыл бұрын
You can also find the solution for the positive intersection of the right and the left side, by noticing that the left side is the inverse of the right side, therfore the intersesction of the right side and the left side must lie on the line y=x. so just put either the right side or the left side equal to x and solve.
@daroncoal2945
@daroncoal2945 6 жыл бұрын
i guess this is the reason why the 0.5 speed exists on youtube
@allyourcode
@allyourcode 2 жыл бұрын
What he's doing with ellipsis substitution is kind hand wavy tho. At no point does it actually extend out to infinity. At every step along the way, you have only ever done a FINITE number of substitutions... The alternating/negative is even more sketch, because x somehow magically disappears from the right side entirely (via this "continued radical" identity, which is pretty neat). I think what's going on here is that we are implicitly relying on the fact that as we do more and more substitutions, the influence of x goes to zero, because it comes under more and more radicals as we do more and more substitutions. Therefore, the right hand side can be replaced with lim as radical_count -> inf of F^radical_count(x) where F(x) = sqrt(5 - sqrt(5 - x)). So, one thing that we are missing is a proof that this limit even exists in the first place. If so, I think the rest is ok. Or maybe we can just proceed based on the assumption that the limit exists (which is what is implicitly going on in the video), and then double check at the end that the "solution" that we "dervied" actually works. I think you can easily imagine a similar problem where "proceed based on the assumption that the limit exists" blows up in your face, and then, you'll be left wondering what went wrong. For example, let's change F to be F(x) = 2x. Then, F^n(x) = 2^n * x. Well, that does not converge except in the special case of x = 0. It only works for special values of F (such as F(x) = sqrt(5 - sqrt(5 - x))).
@DarkMage2k
@DarkMage2k 6 жыл бұрын
You're a math rapper man
@sc-ek6qz
@sc-ek6qz 5 жыл бұрын
Hmm
@tejasv.g5339
@tejasv.g5339 5 жыл бұрын
when your name is Tejas and you see this on top of recommended
@tejaskulkarni6041
@tejaskulkarni6041 5 жыл бұрын
T3MPURR lol my name is Tejas as well
@sarkar_ma
@sarkar_ma 4 жыл бұрын
And you're like "bhai ye kaunsa scene kardia maine?"
@jongyon7192p
@jongyon7192p 5 жыл бұрын
As a speedrunner I love what you did. ...Will you speedrun a 4 part contour integral?
@MG-wj5bn
@MG-wj5bn 3 жыл бұрын
This is crazy to see you here, I am super interested in the 0xA community and saw your HMC video a while back, cool to see other people in that community in other places I visit as well.
@ヤマナカシンヤ
@ヤマナカシンヤ 4 жыл бұрын
First of all, i'm foreigner so i can't understand his English,but i realized that i can understand what he tryed to saying Mathematics is "universal language"
@DiegoTuzzolo
@DiegoTuzzolo 6 жыл бұрын
Please proof formula on 3:36 !!!!
@x-lightsfs5681
@x-lightsfs5681 6 жыл бұрын
I would love to see it!
@zzz942
@zzz942 6 жыл бұрын
There is a recursion, so that may help you
@niltonsilveira4199
@niltonsilveira4199 6 жыл бұрын
@@zzz942 Successive Square Roots with Alternating Sign - Bong Soriano
@kaimm8900
@kaimm8900 6 жыл бұрын
@niraj panakhaniya thanks!!!!
@mohammadzuhairkhan2096
@mohammadzuhairkhan2096 6 жыл бұрын
Expand sqrt (a-sqrt (a-x))=x. You will get x^4-2ax^2-x+a^2-a=0 which can be simplified to (x^-x-1)(x^2+x+1-a). Also note that x^2+x+1-a has two roots, and the positive one equals (sqrt (4a-3)-1)/2.
@taikaherra8937
@taikaherra8937 2 жыл бұрын
First the Minecraft, and now the math itself. These speedruns are getting wild.
@OleJoe
@OleJoe 6 жыл бұрын
My idea is to let 5=a. Solve for a, then replace a with 5 and solve for x. Then throw out the extraneous x solutions.
@LD-dt1sk
@LD-dt1sk 10 ай бұрын
Sometimes I forget that math is very serious and professional
@blitz6588
@blitz6588 5 жыл бұрын
I CAN SWEAR BY JUST LOOKING AT YOU THAT YOU WERE DESPERATE TO BREATHE OUT THE SOLUTION...... NEVERTHELESS AWESOME SKILLS DUDE!!!
@meerable
@meerable 2 жыл бұрын
I never cease to be surprised by these recursive methods of solutions on your channel) it's magical!)
@meghadridebnath1413
@meghadridebnath1413 4 жыл бұрын
The term you have used to solve the first equation is called ' The formula of Sridhar Acharya'. He was an Indian and since I am an Indian too I liked your hasty process to work out this amazing equation...
@jinhuiliao1137
@jinhuiliao1137 4 жыл бұрын
Let y=sqrt(5-x). Then 5=y^2+x. Substitution and have y=y^2+x-x^2. Then factorize: (y-x)(y+x-1)=0 y=x or y+x-1=0 Substitute y=sqrt(5-x). and solve
@aswinibanerjee6261
@aswinibanerjee6261 6 жыл бұрын
Squaring both sides would be easier. Everything you have to do that at first solving the equation wrt 5(wrt 5 the equation is quadratic) then wrt X
@gnpar
@gnpar 6 жыл бұрын
Nevermind, got it. I had never seen that before. Neat!
@Ivan-Matematyk
@Ivan-Matematyk 5 жыл бұрын
This equation equals to the system: 5-x^2=y, 5-y^2=x, y>=0. From here follows that y=x or y+x=1. Then 5-x^2=x or 5-x^2=1-x. Next all is clear.
@kimisun8315
@kimisun8315 5 жыл бұрын
Two sides are inverse functions of each other => intersect at y=x
@flipperpluto_BG
@flipperpluto_BG Жыл бұрын
This is so interesting. GOOD JOB CONGRATULATIONS!!
@JohnDoe-wb2ci
@JohnDoe-wb2ci 6 жыл бұрын
that was kinda cool math seems to be even more interesting than i thought
@Wild4lon
@Wild4lon 6 жыл бұрын
BPRP is a gateway drug
@fergalmdaly
@fergalmdaly Жыл бұрын
Squaring both sides and then look for 2 quadratic factors works out pretty nicely. The fact that x^3 term is missing means that the factors are (x^2 + ax + b)(x^2 - ax + c) and a(c-b)=1 forces a=+/- 1 so this just becomes (x^2 + x + b)(x^2 - x + c) and quickly you get quadratics in the video.
@damianmatma708
@damianmatma708 4 жыл бұрын
03:50 - Seeing this formula, I get three very important questions in my head: 1) Can you do the video with proof of this formula? 2) And what is the formula for the second alternating series of infinitely nested radicals? I mean if the formula for the FIRST alternating series of infinitely nested radicals is: *√{ a - √[ a + √( a - √[ a + √{ … } ] ) ] } = [√(4*a - 3) - 1] / 2* then what is the formula for the SECOND (shown below) alternating series of infinitely nested radicals: √{ a + √[ a - √( a + √[ a - √{ … } ] ) ] } = ??? I know it will be: *√{ a + √[ a - √( a + √[ a - √{ … } ] ) ] } = [√(4*a - 3) + 1] / 2* (Note *"+ 1"* - not "- 1") but *how to prove it?* 3) And what are the general formulas: *√{ a + b*√[ a - b*√( a + b*√[ a - b*√{ … } ] ) ] } = ???* *√{ a - b*√[ a + b*√( a - b*√[ a + b*√{ … } ] ) ] } = ???* and *how to prove them?*
@Nylspider
@Nylspider 4 жыл бұрын
I think he proved the formula in his infinitly nested Michael Jordan video
@linzong-e3o
@linzong-e3o 3 жыл бұрын
hey,are you still there? i think i prove it myself,please let me know if you would like to see the proving process
@ashwinraj2033
@ashwinraj2033 3 жыл бұрын
@@linzong-e3o Sure! Please.
@linzong-e3o
@linzong-e3o 3 жыл бұрын
@@ashwinraj2033 sorry, i have a lot work to do , so it was 5 days later till i saw your comment
@linzong-e3o
@linzong-e3o 3 жыл бұрын
@@ashwinraj2033 please click into my channel , it has the explaining video, i don't know why i couldn't paste the link
@sayanacharya2967
@sayanacharya2967 4 жыл бұрын
I think a better solution will be adding -x on both sides. Like Root(5-x)-x=(5-x)-x^2 Or, Root(5-x)-x=( Root(5-x)-x).(Root(5-x)+x) So, Root(5-x)-x=0 or Root(5-x)+x=1 From there solve it and take out the extraneous solutions.
@shmuelzehavi4940
@shmuelzehavi4940 4 жыл бұрын
Very nice way of solving, however the solutions are still the same two ones. The 2 extraneous solutions do not satisfy the original equation. A very elegant solution.
@gruk3683
@gruk3683 2 жыл бұрын
Him: How to solve without squaring both sides Also him at 1:55
@nikolaskhf
@nikolaskhf 5 жыл бұрын
Speed run... but you still explain it.. what a great teacher...
@blackpenredpen
@blackpenredpen 5 жыл бұрын
: )))))
@mariomario-ih6mn
@mariomario-ih6mn 5 жыл бұрын
0:10 the way he smiled.
@erickwat3216
@erickwat3216 4 жыл бұрын
I like how he makes a video later by squaring both sides, then sets up the quadratic formula as 5=... absolutely brilliant
@AndroidGamingrepublic555
@AndroidGamingrepublic555 6 жыл бұрын
I love his fast calculation abilities. Wait "super fast"
@tejasappana4097
@tejasappana4097 3 жыл бұрын
Thanks for letting me know!
@ΓιωργοςΓουργιωτης-ι8ρ
@ΓιωργοςΓουργιωτης-ι8ρ 6 жыл бұрын
I don't comment a lot but this video was actually amazing
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Γιωργος Γουργιωτης thanks!!!!!!
@justinlewtp
@justinlewtp 5 жыл бұрын
Let y = f(x) the= 5-x^2 Thus x^2 = 5-y x = +-√(5-y) Therefore, f^-1 (x) = +-√(5-x) f^-1 is the mirror image of f along the line y=x, hence f^-1 intersects f at the line y=x Therefore since the question is basically the form f^-1 = f , by considering f(x) = x and solving, gets the same answer
@thechannelofeandmx4784
@thechannelofeandmx4784 6 жыл бұрын
Man...I want whatever kind of coffee you had before this video😂
@pitachipenthusiast
@pitachipenthusiast 5 жыл бұрын
Nothing but respect for our favorite math legend!
@urironen250
@urironen250 6 жыл бұрын
Please make a video of the formula looks cool
@plexirc
@plexirc 6 жыл бұрын
yes please!
@x0cx102
@x0cx102 4 жыл бұрын
Another beautiful way to solve this is actually square the equation, but insfor tead of solving for x, "solve for 5" because you get a quadratic in terms of 5 as the parameter. Upon simplifying, you get a 5 = two possible quadratic in x, which you can then directly solve.
@KevinS47
@KevinS47 2 жыл бұрын
That is a genius thumbnail right there haha
@CauchyIntegralFormula
@CauchyIntegralFormula 4 жыл бұрын
As a bit of an aside, we can set y = sqrt(5-x) = 5 - x^2. Then, y must be positive, and both y^2 = 5 - x and y = 5 - x^2, or: x + y^2 = 5 and x^2 + y = 5. We'll consider y needing to be positive at the end; otherwise, there are at least two solutions to this system of equations, namely those that satisfy x = y, and x^2 + x - 5 = 0. The quadratic equation gives us those easily. Returning to the main equation, squaring both sides gives us 5 - x = x^4 - 10x^2 + 25, or x^4 - 10x^2 + x + 20 = 0. This is a quartic, which is normally troublesome to factor. However! We already know two solutions, namely the solutions to x^2 + x - 5 = 0. That means that x^2 + x - 5 must be a factor of the left-hand side, and indeed we see through division that x^4 - 10x^2 + x + 20 = (x^2 + x - 5)(x^2 - x - 4). So the other two solutions to the quartic satisfy x^2 - x - 4 = 0, which we can again find via the quadratic formula. That's all four solutions. Just throw out the extraneous ones (which are the ones where 5-x^2 is negative) and we're done!
@vlliss
@vlliss 5 жыл бұрын
And I'm here doing my GCSEs. I wish I understood as much as these guys on KZbin. Are there any masters who want to give me some first hand tips? I like maths but I'm not too great at it. I wish I was so badly.
@satwiksortur7814
@satwiksortur7814 3 жыл бұрын
I'm an year late but bear with me, The most important part is being able to simplify every step to make it easier to calculate. Factorization will help you a lot in every step. Its also good to practice mental math to speed up your calculations.
@tryphonunzouave8384
@tryphonunzouave8384 5 жыл бұрын
That's so cool, I love seeing people rush things (well as long as they are still done correctly)
@victoirevim9698
@victoirevim9698 6 жыл бұрын
You need to do maths speedruns at the AGDQ. I'd donate money for that.
@klausg1843
@klausg1843 2 жыл бұрын
Another method: let f(x)=sqr(5-x) and g(x)=5-x^2. Then f(g(x))=g(f(x))=x. Let a=g(a). Then f(a)=f(g(a))=a. So f(a)=g(a) which means that a is a solution. And a solves a=5-a^2. from where you get the two solutions.
@LAMG059
@LAMG059 4 жыл бұрын
Teacher : The test wont be soo hard it's only from what we studied in class The Test:
@BenSmith-xs1yi
@BenSmith-xs1yi 2 жыл бұрын
I think I found a better solution. Identify that the left is the inverse of the right and so x=5-x^2, gives one solution (take the positive solution). Now comes a slightly harder part. You want the intersection of y = - x + c such that the two solutions are equidistant to c/2 ( the intersection of y = x and y = - x +c ). So first solve, - x + c = 5 - x^2, to get x = (1+- sqrt(1- 4(c- 5)))/2, the midpoint of these solutions at a given c must land at c/2, so (x_1 + x_2)/2 =1/2 = c/2, so c = 1, then take negative solution.
@Wabbelpaddel
@Wabbelpaddel 2 жыл бұрын
Lol that's efficient. I substituted u = sqrt(5-x) Then had -u⁴ + 10u² - u = 0, and then... I used Ferrari's 4th degree polynomial formula 🤣
@unemployed756
@unemployed756 6 жыл бұрын
0:01 Doraemon theme song.
@TheKnowledgeOfScience
@TheKnowledgeOfScience 17 күн бұрын
😢😢😢hmmm❤🎉
@stackexchange1065
@stackexchange1065 4 жыл бұрын
Nice solution. Looking at it geometrically, plot the two functions y^2 = 5 - x (corresponding to LHS) and y = 5 - x^2 (corresponding to RHS)..they intersect at 4 points which are the solutions to the equation. Just subtracting the two equations gives you all the 4 solutions. (y - x)(y + x - 1) = 0 Hence 2 of them lie on on y=x and the remaining 2 of them lie on y +x = 1. Now expressing y in terms of x as per the straight lines and substituting it in the parabolas gives us the quadratic equations leading to the solutions
@anmolbansal2604
@anmolbansal2604 5 жыл бұрын
My secret weapon: ×0.75
@blobropch0p
@blobropch0p 4 жыл бұрын
Let L be the line of intersection of the planesx+y= 0 andy+z= 0. (a) Write the vector equation ofL, i.e., find (a,b,c) and (p,q,r) such thatL={(a,b,c) +λ(p,q,r)|λis a real number.} (b) Find the equation of a plane obtained by rotatingx+y= 0 aboutLby 45◦
@givecamichips
@givecamichips 6 жыл бұрын
Nice any% Speedrun, I hope to so your entry in the 100% run including proving the sqrt((4a-3)/2) formula.
@izzystephens3550
@izzystephens3550 3 жыл бұрын
These videos makes me fall in love math all over again ❤️
@yuarkok6273
@yuarkok6273 5 жыл бұрын
My first thought was like: "Is he speaking english?"
@shmaxg
@shmaxg 5 жыл бұрын
There is another nice way to solve the problem. Let a = 5, then you get sqrt(a-x) = a-x^2. Now square it and solve the equation with respect to a. It is very easy since the equation w.r.t. a is quadratic and has a simple determinant. Then you get two quadratic equations w.r.t. x that are easy to solve.
@Wild4lon
@Wild4lon 6 жыл бұрын
When BPRP starts saying 'is nothing but' you know he watches papa flammy's vids
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Wild4lon hello, new subscriber
@vaedkamat484
@vaedkamat484 2 жыл бұрын
I don't know what video is more satisfying
@AwesomepianoTURTLES
@AwesomepianoTURTLES 6 жыл бұрын
Professors hate him! Learn how this man made thousands speedrunning math on KZbin just using this one small trick.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
: )
@kevinl1080
@kevinl1080 4 жыл бұрын
I love how happy he gets 3:05
@jesusthroughmary
@jesusthroughmary 6 жыл бұрын
Blue ped red pen purple pen YAY
@blackpenredpen
@blackpenredpen 6 жыл бұрын
jesusthroughmary yay!!!
@jw7416
@jw7416 6 жыл бұрын
Rip black pen
@jassskmaster7575
@jassskmaster7575 2 жыл бұрын
I couldn't make out a single word you said but the math speaks for itself
@rot6015
@rot6015 6 жыл бұрын
Am i on some drugs or why is he talking so fast to me
@Bicho04830
@Bicho04830 5 жыл бұрын
Both.
@sc-ek6qz
@sc-ek6qz 5 жыл бұрын
Same.
@arushdixit2792
@arushdixit2792 Жыл бұрын
This concept is really useful in calculas problems.
@thephysicistcuber175
@thephysicistcuber175 6 жыл бұрын
Oh and btw: degree 4 equations aren't terrible, you can always solve them with radicals :) although that wouldn't make it good for a speed-equation-solving
@rezazom27
@rezazom27 4 жыл бұрын
(5-x)^1/2 = 5-x^2 changes to the Quartic equation: x^4-10x^2+x+20=0 which is factored into: (x^2 +x -5)(x^2-x-4)=0, thus we have two quadratic equations, which can be solved by quadratic formula and obtain the 4 solutions: (1+ √17)/2, (1-√17)/2, (-1+√21)/2, (-1-√21)/2
@Sid-ix5qr
@Sid-ix5qr 6 жыл бұрын
I thought the whole video was a rap.....
@yoavshati
@yoavshati 6 жыл бұрын
It wasn't?
@papapapapapapageno
@papapapapapapageno 5 жыл бұрын
Isn't it?
@mandaglodon
@mandaglodon 5 жыл бұрын
You are most cool mathematician that I have ever seen in this life.
@mandaglodon
@mandaglodon 5 жыл бұрын
After Einstein and Hawking.
@tamirerez2547
@tamirerez2547 4 жыл бұрын
1:07 The red marker: Please write more slowly !! I'm not enough to spend ink !!! Hellllp!
@TheGrailFinder
@TheGrailFinder 5 жыл бұрын
Here is my solution. We want to find the intersection of the curves y=sqrt(5-x) and y=5-x^2. We can rewrite the first equation as x=5-y^2. So at the intersection we have x=5-y^2 and y=5-x^2. Subtracting one equation from the other, we get x-y=x^2-y^2 => (x-y)=(x-y)(x+y). One solution is when x-y=0=>x=y. So we can write x=5-x^2, which is a quadratic equation, solve in the usual way. When x!=y, we can divide through by the (x-y), giving x+y=1 => x=1-y. Substitute y=5-x^2 and we get x=x^2-4, which is another quadratic, solve in the usual way.
@anthonyr.748
@anthonyr.748 4 жыл бұрын
"And of course, if we want to be cute--because we ARE cute" 😍 yall this man is a keeper we stan 💖
@balrajtavanandi3332
@balrajtavanandi3332 4 жыл бұрын
coolest intergral prof love it
@meiz1795
@meiz1795 5 жыл бұрын
3:34 can't wait for the proof :>
Math for fun, sin(z)=2
19:32
blackpenredpen
Рет қаралды 1,8 МЛН
believe in the math, not wolframalpha
14:50
blackpenredpen
Рет қаралды 1,1 МЛН
When u fight over the armrest
00:41
Adam W
Рет қаралды 30 МЛН
Hoodie gets wicked makeover! 😲
00:47
Justin Flom
Рет қаралды 131 МЛН
How To Choose Mac N Cheese Date Night.. 🧀
00:58
Jojo Sim
Рет қаралды 86 МЛН
風船をキャッチしろ!🎈 Balloon catch Challenges
00:57
はじめしゃちょー(hajime)
Рет қаралды 88 МЛН
Solving An Insanely Hard Problem For High School Students
7:27
MindYourDecisions
Рет қаралды 3,5 МЛН
7 factorials you probably didn't know
12:59
blackpenredpen
Рет қаралды 403 М.
5 Levels Of “No Answer" (when should we use what?)
24:50
blackpenredpen
Рет қаралды 422 М.
i^i
12:27
blackpenredpen
Рет қаралды 1,2 МЛН
Solving 'impossible' integrals in seconds
6:35
MindYourDecisions
Рет қаралды 1,3 МЛН
the COOLEST limit on YouTube!
9:50
blackpenredpen
Рет қаралды 46 М.
Simple Problem STUMPS PhotoMath! Can You Figure It Out?
5:00
MindYourDecisions
Рет қаралды 1,8 МЛН
so you want a VERY HARD math question?!
13:51
blackpenredpen
Рет қаралды 1 МЛН
When u fight over the armrest
00:41
Adam W
Рет қаралды 30 МЛН