Second order differential equations, characteristic equation has repeated roots, reduction of orders, blackpenredpen
Пікірлер: 64
@alef-03 жыл бұрын
This differential series is a god send. I was getting pissed at my professor because he was always explaining like it was the most obvious thing in the world, which by your way it always is, there's always an intuition to it. Only with your videos I can survive the periods in my college, since because of corona I will have three in this year, so less time for this class.
@markb49767 ай бұрын
This guy is a great math teacher! Wish I had him as one of my profs
@jaceallen76095 жыл бұрын
This guy should do magic shows. He really can read my mind. 14:12
@blackpenredpen5 жыл бұрын
Hahahah thanks!!
@fabriziovitali52276 ай бұрын
@@blackpenredpenyou're living in my head rent free
@monlisimon7 жыл бұрын
You are saving my semester!!!
@prathamsinghaniya64213 жыл бұрын
Ok
@orangebottle70613 жыл бұрын
Finally my concepts are getting cleared .....thanks a lot for this series of differential equations
@mirhanan55927 жыл бұрын
man you are just awesome....
@katzuneo6 жыл бұрын
I think I found the best teacher for me :3
@leonardobarrera2816 Жыл бұрын
@@katzuneome to!!!
@hellbark6 жыл бұрын
Really. This channel of math is far far better
@ba-karaktrat4 жыл бұрын
When I graduate with Engineering degree I will send it to you 🤣 you saved me through so much and still with the vids thanks man .... thank you so much
@khubaibsalim1228Ай бұрын
Bro just saved me ❤
@IIAryanMajmudarII2 жыл бұрын
This video is brilliant thank you so much
@rounaqish6 жыл бұрын
you are doing great job , way of teaching is good and simple. Thanks
@truesonsilo22649 ай бұрын
you are amazing men👏👏
@willyh.r.12164 жыл бұрын
Good refresher man, keep it up...you're a great Math Teacher!!!
@carlfels25716 жыл бұрын
I will attend Calc3 next semester, thanks for an intreduction just before the new semester 😀
@leonardobarrera2816 Жыл бұрын
I didn't new it is calc 3!!! I thought it was a easy topic (I never have calc 1) xd
@quasiebowen16866 жыл бұрын
very nicely done, easy to understand ...thanks alot
@faiziliyaskhan3 жыл бұрын
amazing..thanks
@markkleiman65313 жыл бұрын
Math is fun with B&Rpen... Thank you!
@jonathan_chae3 жыл бұрын
Thank you so much! your videos are always helpful and well explained.
@ziadhossam58627 жыл бұрын
you're amazing i owe you aloooot
@sirius.aeternus4 жыл бұрын
great video!
@amiramnoamdoron4 жыл бұрын
Super
@hanwadou17778 жыл бұрын
teacher can you do more pleasssssse !!!!! I beg you
@earl82954 жыл бұрын
Thanks alot for your help !!
@l3igl2eaper6 жыл бұрын
Will going through the reduction of orders process always yield all the solutions?
@phenylalanine81455 жыл бұрын
Thank you that was a good explaination but what about if the root was negative ?
@joluju23755 жыл бұрын
I'd like to know, too.
@krs-fltutorials44875 жыл бұрын
@@joluju2375 Complex numbers.
@benwinstanleymusic5 жыл бұрын
Khan academy has a video addressing that, it involves Euler's formula
@carultch Жыл бұрын
If the input to the square root is negative, you get complex roots. The solution ends up taking on the form of e^(c*t) * (A*cos(w*t) + B*sin(w*t)), where r's solutions are r = c +/- w*i, where i is the imaginary unit. In the event that your roots are both purely imaginary, then the exponential envelope term disappears, and you just get a linear combination of sine and cosine.
@phenylalanine8145 Жыл бұрын
@@carultch thank you for your answer
@Seeker-pq4ec2 ай бұрын
Why integration of zero is constant?
@aljoker30533 жыл бұрын
A coil of inductance L Henry and a capacitor of C Farad are connected in series if I=I0, Q=Q0 when t=0 Find: Q and I when t
@carultch Жыл бұрын
Use Kirchhoff's laws to add up the voltage around the loop. The "voltage drop" across the inductor and the voltage drop across the capacitor must add up to zero: L*q" + q/C = 0 where q is the charge on the capacitor. I have my reasons for quoting voltage drop for the inductor, since it isn't technically a voltage drop, but for our purposes, we can call it that and go through the same mental exercise as if it were a voltage drop. We are solving for q(t). Assume the solution is: q(t) = e^(r*t) This means: (L*r^2 + 1/C)*e^(r*t) = 0 Solve for when the first term equals zero: L*r^2 = -1/C r^2 = -1/(L*C) r = +/- j*sqrt(1/(L*C)), where j is the imaginary unit Let w = sqrt(1/(L*C)) Since we have imaginary solutions for r, this means the solution is a linear combination of sine and cosine. q(t) = A*cos(w*t) + B*sin(w*t) Its derivative is the current: I(t) = q'(t) = -A*w*sin(w*t) + B*w*cos(w*t) At t=0, q(t) = Q0, and I(t) = I0. This means: A = Q0, and B = I0/w So our solution is: q(t) = Q0*cos(t/sqrt(L*C)) + I0*sqrt(L*C) * sin(t/sqrt(L*C)) I(t) = -Q0/sqrt(L*C) * sin(t/sqrt(L*C)) + I0*cos(t/sqrt(L*C))
@Playboyy19857 жыл бұрын
so do you always just add t to e^t or x to e^x ?
@carultch Жыл бұрын
Yes. And if there is a thrice repeated root, you would square the t, or square the x, when setting up your three component functions. So you'd get A*e^(r*t) + B*t*e^(r*t) + C*t^2*e^(r*t)
@GHOSTRIDER4EVER3 жыл бұрын
That screen change tho: yeeeeet he knows me now and my mind too
@danrobertluarez43185 жыл бұрын
Teacher When your put the value of the double prime to the orginal formula why dont you square the first term like the original formula?
@ioannaathineos526911 ай бұрын
KING
@joanchepkorir67876 ай бұрын
What if we have been given conditions
@urano48105 жыл бұрын
Are auxiliary equations the same thing as homogeneous equations?
@soundofthew4v3s10 ай бұрын
yes
@teotyrov8 жыл бұрын
how do you know that there are no other solutions?
@AndDiracisHisProphet7 жыл бұрын
nth order differential equations have n different (i.e. linearly independent) solutions. since he found two, you know there are no other solutions
@joluju23755 жыл бұрын
@@AndDiracisHisProphet Thanks, I didn't know that. When were you taught that, is there a video demo somewhere ?
@AndDiracisHisProphet5 жыл бұрын
@@joluju2375 Hm, I dunno. Maybe in 2nd Semester or maybe earlier. That is relativly elementary ODE stuff. Although I couldn't shake a proof out of my sleeve from the top of my head.
@joluju23755 жыл бұрын
@@AndDiracisHisProphet The truth is I haven't opened a math book for 40 years and was never taught ODE. But bprp is so good at explaining things that now I'm learning a lot of new things, far above the maths level we have at 18 in my country, I don't know the american name for that level.
@AndDiracisHisProphet5 жыл бұрын
@@joluju2375 I'M not american either :) ODE is University level, although I had a little bit in my physics course in school. Have fun with mathematics :) bprp is really cool, although his stuff is more about calculating and less about proving
@glenne16 жыл бұрын
HI How can v'' e^3t never becomes zero? @blackpenredpen
@andyu2455 жыл бұрын
e to any power is never zero, try to find x so that e^x equals 0, you won't find it, it doesn't exist
@urano48105 жыл бұрын
and this is because e is a constant So e^1=e And e^0=1 Friendly reminder
@jonfisher723 жыл бұрын
My professor, makes no sense @blackpenredpen, makes sense
@merlijn1e4 жыл бұрын
I love you
@skips2795 Жыл бұрын
you are my math jesus
@SeriousApache6 жыл бұрын
K stands for "Konstant"
@KingofArmageddon206 жыл бұрын
You talk too fast and your accent doesn’t help at all, slow down please!
@phuongnguyen-kc8hi6 жыл бұрын
This is math not english class stop complaining. I understand him just fine. His technique and explain helps me refreshing and understanding more into the topic. This is a plus. When you study math you just have to focus and do lots of practice problems.