area of polar curves, calculus 2

  Рет қаралды 46,121

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 137
@guscox9651
@guscox9651 5 жыл бұрын
That feeling when you click because you know the area of a circle and then he starts using integrals
@Vandarte_translator
@Vandarte_translator 5 жыл бұрын
Oh Boy! It's calculus time!
@charlesnguyen8486
@charlesnguyen8486 5 жыл бұрын
That feeling when you think you know integrals and then he starts talking about polar
@blackpenredpen
@blackpenredpen 5 жыл бұрын
HAHAHA
@メ乇しム尺
@メ乇しム尺 5 жыл бұрын
Would be really funny if one of your student actually wrote down "you do it" as an answer, but then add "just kidding, here's the actual solution:" with the proof below.
@bernardoflores1819
@bernardoflores1819 5 жыл бұрын
I did it once with an exam bc i didn't know how to solve the problem except I didn't wrote the actual proof lol
@GSHAPIROY
@GSHAPIROY 5 жыл бұрын
You uploaded this less than one hour after the AP Calculus tests.
@privateaccount4460
@privateaccount4460 5 жыл бұрын
Gabriel Shapiro AB Calc BC 🤧
@d_mcg
@d_mcg 5 жыл бұрын
a = (pi + 2) / 8 b = 1 / 2
@TRIMISIS
@TRIMISIS 5 жыл бұрын
"now we have find the second angle" Hey, that's easy, it's pi/2 "it's not pi/2" Why do I even bother, honestly
@schizoframia4874
@schizoframia4874 2 жыл бұрын
5:43 this math problem out of context is funny
@frozenmoon998
@frozenmoon998 5 жыл бұрын
You see a hard question on your test that your professor gave you to solve and you are like: The answer is = "You do it".
@drpeyam
@drpeyam 5 жыл бұрын
Pretty 🥰
@6612770
@6612770 5 жыл бұрын
Excellent coverage of all important steps and gotchas! I do have one criticism.. When you deal with the "negative r" value, don't describe it as "you have to go back One". Instead of sliding your pen by One, you should 'flip' the tip of the pen over (the base stays where it is) to implement the effect of a "negative radius value" at the subject theta angle. 😉
@YoshiActorEggman
@YoshiActorEggman 5 жыл бұрын
upload ap calc frqs when they release!!
@djcoop4335
@djcoop4335 5 жыл бұрын
try i^i^i^i^i^i^i^i^i^..... I tried it myself and got -1 and e^(pi/2) as answers. Thanks
@JeffreyLByrd
@JeffreyLByrd 5 жыл бұрын
Regarding you do it, when I took Cal II, most of the test over polar integration was just setting them up. Basically the teacher already knew that we could integrate, but the setup on these problems is the tricky part. Also my teacher favored polar curves with lots of tiny loops, so he knew a fair bit of the test would be taken up just finding the intersections and creating the graphs.
@PrashantKarmakar
@PrashantKarmakar 2 жыл бұрын
I think limits for both the integrals giving second area can be -π/2 to 0.
@bryanwu5829
@bryanwu5829 3 жыл бұрын
any student would be lucky to have u as their teacher, so easy to understand
@plislegalineu3005
@plislegalineu3005 2 жыл бұрын
yes we already know u is loved in integrals
@federicopagano6590
@federicopagano6590 5 жыл бұрын
-pi/2
@KPSS12
@KPSS12 5 жыл бұрын
Do It! Just do it! Make your dreams come true!
@HelloWorld-dq5pn
@HelloWorld-dq5pn 3 жыл бұрын
I got the same result in the second one by using 3pi/2 and 2pi as lower and upper limits of integration, respectively.
@GaryTugan
@GaryTugan 3 жыл бұрын
and i got the same thing integrating using (-pi/2 to 0). :)
@PinkPastelShark
@PinkPastelShark 3 жыл бұрын
Is setting the absolute values of each equation equal to each other a valid way to find the intersections without the graph? Then you could just find θ at those r values for the limits of integration. (And if the actual values are negatives of each other, you could check if the angles are off by pi, right?)
@roderickwhitehead
@roderickwhitehead 5 жыл бұрын
I LOLd at 4:40. YOU DO IT! LOVE IT!
@hyperboloidofonesheet1036
@hyperboloidofonesheet1036 5 жыл бұрын
r=cosΘ-sinΘ substitute Θ for arctan(y/x) converts to r=cos(arctan(y/x))-sin(arctan(y/x) then from the right triangle you find cos(arctan(y/x)) is x/r and sin(arctan(y/x)) is y/r substituting you get r=x/r-y/r multiply through by r you get r²=x-y substitute r² for x²+y² and you have x²+y²=x-y move everything to left side you get x²-x+y²+y=0 complete the squares you get x²-x+1/4 + y²+y+1/4 = 1/2 factoring you get (x-1/2)² + (y+1/2)² = 1/2 So the other figure is indeed a circle, centered at (1/2,-1/2) with a radius of 1/√2
@noradomeij4493
@noradomeij4493 2 жыл бұрын
Thank you for this video! I've been having a hard time with the angles when the circles aren't centered at the origin. Your explanation was great!
@ajitfhamacademy
@ajitfhamacademy 5 жыл бұрын
Thanks for your efforts.
@zanevaughn273
@zanevaughn273 Жыл бұрын
Would it be easier if you equalled the two r functions together to find the bounds?
@zbr4cker117
@zbr4cker117 5 жыл бұрын
2:43 with subtitles "for the Virgin right" lmaaaaaaaaao
@gamesbond006
@gamesbond006 5 жыл бұрын
Lol
@keescanalfp5143
@keescanalfp5143 5 жыл бұрын
yooh, the same at 8:30 "…only what i just besides the Virgin, of course?" funny, should be about points on the y-axis..
@drkiranmahabole1836
@drkiranmahabole1836 5 жыл бұрын
TRANSFORMATION OF GRAPHS PLEASE REQUEST!!!!!
@jjeherrera
@jjeherrera 5 жыл бұрын
There is a serious misconception of polar coordinates in this video which URGENTLY needs to be corrected: In polar coordinates r is ONLY defined in the domain [0,infinity), and is therefore always positive. The blue circle is displaced to a centre at (1/2,-1/2) with radius 1/2. You are right in that for this case r= cos (theta)-sin (theta), but then the domain of theta is [-3*pi/4,pi/4], which keeps r positive. THE WHOLE DOMAIN (pi/4, 5*pi/4) IS EXCLUDED. As usual, x= r*cos(theta) and y= r*sin(theta). Therefore, the circle is drawn clockwise in the allowed domain for x=[cos(theta)-sin(theta)]cos(theta), and y=[cos(theta)-sin(theta)]sin(theta). If you check it, you'll find the circle goes clockwise from (0,0) to (0,0) within this domain. The limits in your integral would then be 0 and pi/4 in your first example, and -pi/2 and 0 in the second one. The geometrical interpretation is straightforward as you can see. I love your videos, but I REALLY URGE you to correct this one, since it's misleading.
@przemysawkwiatkowski2674
@przemysawkwiatkowski2674 5 жыл бұрын
8:20 „Whenever you are on the y axis the theta is either pi/2 or 3pi/2.” - actually the origin is also on the y axis, and the theta is pi/4 there. :-)
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Przemyslaw Kwiatkowski I think I also said “anywhere on the y-axis beside the origin” after that.
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Besides*
@przemysawkwiatkowski2674
@przemysawkwiatkowski2674 5 жыл бұрын
Indeed... that was 10sec later... :-)
@koenth2359
@koenth2359 5 жыл бұрын
a. π/4-(π/8-1/4)=π/8+1/4 b π/2-2(π/8-1/4)-π/4=1/2 No integrals, just (quarter) circle and triangle areas
@Green_Eclipse
@Green_Eclipse 5 жыл бұрын
I think that the first problem might be easier with basic geometry if you graph it. There are points at (0,0) (1,0) (0,-1) (-1,-1). Each of these points have the tan line slope of 1 or -1 so that proves that you can find the center by making normal lines at these points. Of course that could be geometric or algebraic. Then those same lines give you the radius/diameter. To find the segment of the circle in quadrant 1, use the triangles and circle sector formulas. Specifically the triangle would be from (0,0) to (1,0) to (.5,-.5)[the center of the circle]. The lines are perpendicular at the center so that angle is 90°. The area of that portion in the first quadrant can now be defined of a quarter circle minus the triangle. Which is pi/8 minus 1/4. Finally, the area of a quarter of the larger circle minus the section is pi/8 + 1/4. That seems like a lot in typing but actually isn't much. The second problem can be approached similarly but with a little bit more geometry if anyone is interested I can type it out in the comments. However, the important part is the number of problems that can't be solved geometrically and that's why calculus is my favorite subject and this video is entertaining and fun. Thanks BlackPenRedPen!
@aayushpaswan2941
@aayushpaswan2941 3 жыл бұрын
nicee
@VibingMath
@VibingMath 5 жыл бұрын
Homework from bprp XD
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Mak Vinci yup!
@blackpenredpen
@blackpenredpen 5 жыл бұрын
It’s actually a video from a few weeks ago.
@VibingMath
@VibingMath 5 жыл бұрын
@@blackpenredpen It's ok, the world will know the area of circle soon 😁
@Kurgosh1
@Kurgosh1 5 жыл бұрын
Things I learned from this video: it's been way too long since I did anything with polar coordinates and blue pens have somehow become acceptable.
@dhanujpathak3200
@dhanujpathak3200 5 жыл бұрын
Please upload videos on flux, surface integrals. It would be really helpful.
@tahaabujrad7806
@tahaabujrad7806 5 жыл бұрын
Putting a negative sign for the radius is a mistake, because it is defined to be positive and the angle makes the direction. Although the integration is still the same you should integrate it from 3pi/2 to 2pi.
@sebinsuresh9656
@sebinsuresh9656 5 жыл бұрын
But you get the same answer regardless of whether you pick "theta = 3*pi/2 to 2*pi" OR "theta = pi/2 to pi" ?? what's the difference.
@Gold161803
@Gold161803 5 жыл бұрын
Either way works. Thinking parametrically, an interval from 0
@oscartroncoso2585
@oscartroncoso2585 5 жыл бұрын
For a sec I thought this notification was a reply from bprp and I was like wait I do it 😂
@fabiogenduso1044
@fabiogenduso1044 4 жыл бұрын
I am wondering on how can be the radius negative in polar coordinates. I though it should be positive by definition. Isn't the radius a length as a matter of fact? So what is the sense of r=-1?
@sensei9767
@sensei9767 5 жыл бұрын
You could also use 3pi/2 and 2pi as boundaries, right?
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Sensei yes
@justabeardedguythatisahero9848
@justabeardedguythatisahero9848 5 жыл бұрын
@@blackpenredpen too confusing to be honest why did you assume the cooridnate ( pi , -1 ) for a point on the positive theta axis ?
@isaacaguilar5642
@isaacaguilar5642 5 жыл бұрын
Hashrima Senju because the negative 1 makes u move back into the first quadrant so its the same thing
@justabeardedguythatisahero9848
@justabeardedguythatisahero9848 5 жыл бұрын
@@isaacaguilar5642 explain more intutively pls
@keescanalfp5143
@keescanalfp5143 5 жыл бұрын
@@justabeardedguythatisahero9848, well let's say, please don't confuse (x, y(x)) coordinates, orthonormal, with (thêta, r(thêta)) ones, polar. the ‘place’ bprp pointed to, is expressed in terms of x,y (+1, 0). now in polar terms of th,r both (0, 1) and (π, -1). further of course (2π, 1) and (3π, -1) &c. explanation needed? with thêta = 0 or 2π, 4π,… the radius axis points along the positive x-axis, then r=+1 coming up on x=+1. with thêta = π or 3π, 5π,… the radius axis points along the negative x-axis, that is, r>0 lies along *x
@Mryeo5354
@Mryeo5354 5 жыл бұрын
Aww I only know how to use Cartesian coordinates.
@jasonp500
@jasonp500 5 жыл бұрын
Bprp: r=cos()-sin() Me: What is that? Is it y=cosx-sinx? Me: wait... ()=π/4? What is going on?
@ramadanierdogan
@ramadanierdogan 5 жыл бұрын
Nice
@bhuvird178
@bhuvird178 5 жыл бұрын
Thanks it will help in my exam
@yyanr7834
@yyanr7834 5 жыл бұрын
Thank u man
@drkiranmahabole1836
@drkiranmahabole1836 5 жыл бұрын
Plz make a VEDIO on transformation of graphs plzzzzzzzzzzzsssssssssssss👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👌🏽👌🏽👌🏽👌🏽👌🏽👌🏽👌🏽👌🏽👌🏽👌🏽
@sigma914
@sigma914 5 жыл бұрын
Hey, bprp, could you please do a video about why the sum of 1/n! equals e?
@hurshutube
@hurshutube 5 жыл бұрын
Pls load a video showing formula for sum 1+1/2+...+1/n.
@VaradMahashabde
@VaradMahashabde 5 жыл бұрын
well i'll let you know that 3pi/2 to 2pi also works
@msolec2000
@msolec2000 5 жыл бұрын
Couldn't this be done geometrically? line y = x - 1 is a blue diameter, and for red you can do the quarter circle plus the right isosceles on the fourth quadrant...
@keescanalfp5143
@keescanalfp5143 5 жыл бұрын
of course, we guess. and again, you do it! please observe that red quarter circle Minus the right isosceles triangle, if we understood well. how was exactly the question..
@robertcotton8481
@robertcotton8481 5 жыл бұрын
(Cos-sin)^2=1(cos-sin)^2=1-2cossin so we got a lot of cancellation to get first one is just plus integral of cossin and 2nd is negative of that need pen and paper to do the rest via di method
@robertcotton8481
@robertcotton8481 5 жыл бұрын
I messed up somewhere cause now I get both answers being zero
@d_mcg
@d_mcg 5 жыл бұрын
​@@robertcotton8481 use the double angle identity after expanding. 2sin(ø)cos(ø) = sin(2ø) cos(ø)^2 + sin(ø)^2 = 1 1/2 ∫ (cos(ø) - sin(ø))^2 dø 1/2 ∫ cos(ø)^2 - 2sin(ø)cos(ø) + sin(ø)^2 dø 1/2 ∫ 1 - sin(2ø) dø 1/2 ø + 1/4 cos(2ø) + C hope this helps!
@pranavsuren9489
@pranavsuren9489 5 жыл бұрын
The first curve in Cartesian is equal to: 2xy= (x² +y²)(1-(x²+y²)) Imagine integrating that!
@nazeerahamed3857
@nazeerahamed3857 5 жыл бұрын
Which univ are you from?
@pavlegavrilovic8515
@pavlegavrilovic8515 5 жыл бұрын
A:0.0535 B:0.678
@buxeessingh2571
@buxeessingh2571 5 жыл бұрын
I must ask about all the explanations about setting the limits. When I last taught this (1995), I was told to expect that students would already know and understand about the relationship between theta and r when r is negative. Moreover, they should have already known about the fact that points where polar curves intersect would not necessarily correspond to the same (r, theta) combination. Is this not true any more?
@CheapseaChicken
@CheapseaChicken 5 жыл бұрын
had my ib hl math paper 2 exam today, anyone else?
@EricTai845
@EricTai845 5 жыл бұрын
AddPrada Did you find it harder than paper 1?
@CheapseaChicken
@CheapseaChicken 5 жыл бұрын
nah p1 was harder, did p3 calculus yesterday and was pre easy. wbu
@Daniel-ge1rt
@Daniel-ge1rt 5 жыл бұрын
What is the thing called after d?
@spacefertilizer
@spacefertilizer 5 жыл бұрын
theta
@alicwz5515
@alicwz5515 5 жыл бұрын
Can we calculate the volume of a 3d polar function using some type of formula like this? For a function in the form: f(theta, alpha) = r
@cuentafake140
@cuentafake140 5 жыл бұрын
You can use spherical coordinates
@呂永志-x7o
@呂永志-x7o 5 жыл бұрын
第二題角度要怎麼判斷?用零代入還是在同一個點。
@blackpenredpen
@blackpenredpen 5 жыл бұрын
呂永志 因為下面已經是π/2,所以我們必須用π
@呂永志-x7o
@呂永志-x7o 5 жыл бұрын
對,你英文是這樣說的。但我的意思是,如果沒有前一個角度,其實這角度不能確定對嗎?
@blackpenredpen
@blackpenredpen 5 жыл бұрын
呂永志 對 “要找鄰居” 我們也可用-π/2 to 0
@呂永志-x7o
@呂永志-x7o 5 жыл бұрын
@@blackpenredpen 這題圖不算複雜所以可行,但我想有些圖不易這樣判斷。
@blackpenredpen
@blackpenredpen 5 жыл бұрын
呂永志 是啊 我有算這個算到快瘋掉的時候
@JianJiaHe
@JianJiaHe 5 жыл бұрын
They are all circles, we can do it with geometry. There are two “o’s” in “You do it”, is it a coincidence? I don’t think so.
@egillandersson1780
@egillandersson1780 5 жыл бұрын
The second curve is NOT a circle !
@JianJiaHe
@JianJiaHe 5 жыл бұрын
It’s a circle.
@JianJiaHe
@JianJiaHe 5 жыл бұрын
We rewrite the function as r = a*sin(theta+b), then use the property of right triangle in a circle, we can prove that the blue one is circle. The functions like a*sin(theta+b) are all circle.
@egillandersson1780
@egillandersson1780 5 жыл бұрын
@@JianJiaHe Soory ! You're right.
@peterchan6082
@peterchan6082 5 жыл бұрын
The real challenge . . . solve them WITHOUT using calculus AT ALL. Just use plane geometry. You crack a nut every time with a sledge hammer, that's a sure win but far less fun. Crack it with a usual nutcracker and you'll get a lot more fun.
@spacefertilizer
@spacefertilizer 5 жыл бұрын
I think it's easier without calculus. I took courses for learning this a long time ago and had forgotten how to do it with calculus. With plane geometry it was straightforward with just adding and subtracting parts.
@alexasdwe
@alexasdwe 3 жыл бұрын
The answer for the first us (pi-sqrt(8)+2)/4
@WillToWinvlog
@WillToWinvlog 5 жыл бұрын
I figured out a way to solve this with geometry alone!
@henrybeenh7076
@henrybeenh7076 5 жыл бұрын
I got (pi + 1)/4 and 1/2.
@DrewAsWellAs
@DrewAsWellAs 5 жыл бұрын
Can’t you solve algebraically using area of segments and subtracting the segment area from big circle? I tried to do it and I might have made a mistake but I got quantity PI + 2 all over 8
@spacefertilizer
@spacefertilizer 5 жыл бұрын
I solved it by ordinary geometry and algebra and got it right. First one should be (pi+2)/8 and the second one should be 1/2. edit: i saw now that you answered this a long time ago, but maybe someone else who searches the comments would like to know.
@francis590
@francis590 3 жыл бұрын
you do it
@egillandersson1780
@egillandersson1780 5 жыл бұрын
I like the "you do it", then I did it : pi/8 for the first and 1/2 for the second. Right ?
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Egill Andersson yes! : )))
@federicopagano6590
@federicopagano6590 5 жыл бұрын
Couldn't we define in the second example that -pi/2
@cerberus0225
@cerberus0225 5 жыл бұрын
@@blackpenredpen I think I have to disagree. I'm trying them myself, went through them, and double-checked my answers with Wolfram Alpha, and I didn't get pi/8 for the first answer. Instead, I got (pi+2)/8. Here's my math as best as I can enter it into here. So obviously the first integral is pi/4, and we can check this geometrically by just seeing that it's a quarter of a circle with radius 1. The area of such a circle is pi, so a quarter of it is pi/4, and this is a straightforward integral anyway. Now for the second integral, the integral from 0 to pi/4 of 1/2(cos(theta)-sin(theta))^2 d(theta). First, let's work out that square, to get the integral from 0 to pi/4 of 1/2(cos^2(theta)+sin^2(theta)-2*cos(theta)*sin(theta)) d(theta). We simplify this with one of our favorite identities and get the integral from 0 to pi/4 of 1/2(1 - 2*cos(theta)*sin(theta)) d(theta). We can break this apart into two integrals and get the integral from 0 to pi/4 of 1/2*(1) d(theta) - the integral from 0 to pi/4 of 1/2*2*cos(theta)*sin(theta) d(theta). Focusing on the first of those, it's simply the integral from 0 to pi/4 of 1/2 d(theta). This is a straightforward integral and yields pi/8. For the second integral, we simplify it to the integral from 0 to pi/4 of cos(theta)*sin(theta) d(theta). This seems tricky, but it's easy enough to do a u-substitution with u = sin(theta), du = cos(theta) d(theta), and change the integral bounds from 0 to pi/4 into 0 to sqrt(2)/2. We now have the integral from 0 to sqrt(2)/2 of u du. This gives us 1/2 u^2 evaluated from 0 to sqrt(2)/2, which becomes 1/2(1/2-0) = 1/4. Now we take our three results and add or subtract as is appropriate. We should have pi/4 - pi/8 + 1/4, which first simplifies to pi/8 + 1/4. If we want, we can rewrite this as (pi+2)/8. For the second problem, I followed a very similar method (seeing as the integrals have only changed in their orders and boundaries, this isn't too complicated) and got 1/2, the same as the poster above.
@ezras7997
@ezras7997 5 жыл бұрын
Oh no, geometry.
@stuartyellow1679
@stuartyellow1679 5 жыл бұрын
First I did it without any integral. I guess its way easier ;) But than I doublechecked it with your integrals :) Im happy that I got the same results xD
@obinnanwakwue5735
@obinnanwakwue5735 5 жыл бұрын
a) pi/8 + 1/2 b) 1/2
@Ni999
@Ni999 5 жыл бұрын
Double check your work. 😉
@obinnanwakwue5735
@obinnanwakwue5735 5 жыл бұрын
@@Ni999 wrong signs?
@Ni999
@Ni999 5 жыл бұрын
@@obinnanwakwue5735 On the second one, yes. On the first one you (probably) have a sign wrong on the way to the final answer (I did too). Your self-checking hint for these kind of questions is that you're looking for area, answers must be positive.
@obinnanwakwue5735
@obinnanwakwue5735 5 жыл бұрын
@@Ni999 oh I get it I jacked up with the sign integrating one of the functions in the first problem, that should be + 1/2 and in the second one that should be 1/2 as well. Let me edit that.
@Ni999
@Ni999 5 жыл бұрын
@@obinnanwakwue5735 π/4 is the area of a full quarter red circle, the first problem is less than that, less than 0.785. (π/8) + ½ ≈ 0.893 Double check your terms, you're close. Second one is correct.
@pukkandan
@pukkandan 5 жыл бұрын
But the fun part is to solve this without calculus
@Archik4
@Archik4 5 жыл бұрын
2+2=you do it.
@alejrandom6592
@alejrandom6592 3 жыл бұрын
= you do it
@alephii
@alephii 5 жыл бұрын
this guy loves to hold balls!
@SlenderCamGaming
@SlenderCamGaming 5 жыл бұрын
Writing "You do it" is the easiest way to do well in a test. You just have to hope the examiner is good at maths or will cheat by using the mark scheme.
@blackpenredpen
@blackpenredpen 5 жыл бұрын
SlenderCam lilll
@yaleng4597
@yaleng4597 5 жыл бұрын
If I wre your students and I have time in the test, I will write 'you do it' and then cross it out, and give the correct answer below it. XD
@TttT-xc8lq
@TttT-xc8lq 5 жыл бұрын
I solve the peoblem without integral
@drkiranmahabole1836
@drkiranmahabole1836 5 жыл бұрын
If u have guts sir then try to solve JEE MAINS AND ADVANCE PAPER because it is the toughest paper in the world
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Kiran Mahabole Why is it the toughest test?
@mdx3227
@mdx3227 5 жыл бұрын
The asnwer its why!? xD
@vladislav_artyukhov
@vladislav_artyukhov 5 жыл бұрын
We havr homework😂
@habouzhaboux9488
@habouzhaboux9488 5 жыл бұрын
Redpenbluepen, not much of black pen
@seroujghazarian6343
@seroujghazarian6343 5 жыл бұрын
The first one is (pi-2)/8
@d1o2c3t4o5r
@d1o2c3t4o5r 5 жыл бұрын
Serouj Ghazarian i got (pi + 2)/8
@p.singson3910
@p.singson3910 5 жыл бұрын
Let me make you both happy by settling for (π±2)/8😁
@seroujghazarian6343
@seroujghazarian6343 5 жыл бұрын
@@d1o2c3t4o5r d it! I accidently put theta-(cos(2theta))/2 instead of theta+(cos(theta))/2
@seroujghazarian6343
@seroujghazarian6343 5 жыл бұрын
And the second one gives you.... One! Wow!
Area Enclosed by a Polar Curve, Calculus 2
10:04
blackpenredpen
Рет қаралды 38 М.
The BIGGEST rectangle under y=x^3 (but NO calculus!)
9:15
blackpenredpen
Рет қаралды 32 М.
Chain Game Strong ⛓️
00:21
Anwar Jibawi
Рет қаралды 27 МЛН
Lamborghini vs Smoke 😱
00:38
Topper Guild
Рет қаралды 65 МЛН
Calculus 2: Finding Areas for Polar Curves | Math with Professor V
49:43
Math with Professor V
Рет қаралды 1 М.
the geometry of the third derivative
31:10
Michael Penn
Рет қаралды 75 М.
How to rotate any graph by any angle
16:10
RedBeanieMaths
Рет қаралды 679 М.
Finding Area Bounded By Two Polar Curves
29:21
The Organic Chemistry Tutor
Рет қаралды 370 М.
What Lies Between a Function and Its Derivative? | Fractional Calculus
25:27
Area of Polar Curve r=1+2cos(theta)
7:28
blackpenredpen
Рет қаралды 160 М.
Slope of tangent to a polar curve at a given point
10:50
Prime Newtons
Рет қаралды 2,4 М.
Line Integrals Are Simpler Than You Think
21:02
Foolish Chemist
Рет қаралды 134 М.
Why Students Struggle With Arc Length and How to Help
9:57
Math The World
Рет қаралды 107 М.