Is there a difference?

  Рет қаралды 55,101

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 151
@broccolo.fiolaro
@broccolo.fiolaro 6 жыл бұрын
"If you ever feel negative, just plug absolute value around you and you'll feel positive". He is the Bob Ross of math
@Invalid571
@Invalid571 6 жыл бұрын
Someone partied too hard last night. 😎
@ninjakawasaki1972
@ninjakawasaki1972 6 жыл бұрын
Went from absolut vodka to absolute value real quick
@kwirny
@kwirny 5 жыл бұрын
@@ninjakawasaki1972 Haha
@ShAlAmAnAyA3
@ShAlAmAnAyA3 5 жыл бұрын
that part hahaha
@romainedixon4560
@romainedixon4560 6 жыл бұрын
Next time i feel depressed im gonna stand between two sticks #absvalueismostpowerfulthing
@arnavanand8037
@arnavanand8037 5 жыл бұрын
"We are not going to talk about complex values here" I feel betrayed
@carsonyt5306
@carsonyt5306 6 жыл бұрын
Actually the derivative of the complex value of ln(x) for x
@nicholasjuricic3683
@nicholasjuricic3683 2 жыл бұрын
Can anyone answer: does this mean ln x and ln |x| differ by a constant? Why / why not.
@seiken2106
@seiken2106 2 жыл бұрын
@@nicholasjuricic3683 I think neither of those is the difference, maybe it's the domain of the function For ln x: x must be >0 For ln|x| : x can be any number other than 0
@borg972
@borg972 6 жыл бұрын
This video is gold. I would mention also the integral of 1/x because why it is ln|x| with absolute value is a very common question!
@carultch
@carultch Жыл бұрын
If you look at the full picture of logarithms in complex numbers, it explains why. complex log(x) = ln(|x|) + i*(angle(x) + 2*pi*k) where |x| is the magnitude of x, and angle(x) is the angle in radians to x, ccw from the positive real numbers. The k is any arbitrary integer. For positive real values of x, angle(x)=0, and we can keep it simple and let k=0, and see that it is simply equal to ln(x). For negative real values of x, angle(x) = pi. The imaginary part is just a constant of i*pi. Let the arbitrary constant of integration be C - i*pi, and you can see that it salvages the result ln(|x|). It is a legal move to have a different arbitrary constant on both sides of the vertical asymptote, because you can't integrate across a vertical asymptote, when the improper integral on either or both sides is divergent.
@adilsonfranciscoquissai3888
@adilsonfranciscoquissai3888 5 жыл бұрын
The smallest details can change everything. Thanks again for that
@MrHatoi
@MrHatoi 5 жыл бұрын
You can also set the absolute value of x to be equal to sqrt(x^2), since the square root is always positive, so the square and square root cancel and preserve the magnitude of the number, but not the sign. Then you can take the derivative of this and get x/sqrt(x^2), which is the same as x/|x|.
@FGj-xj7rd
@FGj-xj7rd 6 жыл бұрын
Math is Thug Life 🚬😎
@fountainovaphilosopher8112
@fountainovaphilosopher8112 6 жыл бұрын
0:45 "keepin' it real"
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Ognjen Kovačević definitely
@xevira
@xevira 4 жыл бұрын
I know this is an old video, but I wanted to say "When your calculus is so LIT that you need to wear sunglasses to see the board properly."
@Spectrojamz
@Spectrojamz 4 жыл бұрын
😂
@marvhartigan3677
@marvhartigan3677 4 жыл бұрын
haha well said xevira
@primthon9596
@primthon9596 6 жыл бұрын
I always watch your videos before bed 😂 they are great keep going ❤️
@MathIguess
@MathIguess 5 жыл бұрын
"If you ever feel negative, just take the absolute value of yourself" xD
@no-po9nv
@no-po9nv 4 жыл бұрын
I'm in grad school and your channel keeps popping up! You've helped me solve two homework problems! You are too cool for school, bro!:)
@cpotisch
@cpotisch 4 жыл бұрын
Alternate method: d/dx(lnx) = 1/x for x>0, and, by the chain rule, d/dx(ln(-x) = 1/(-x)*(-1) = 1/x for x
@goliathcleric
@goliathcleric 6 жыл бұрын
I've been staring at the bar all day, craving a drink. That absolute value joke is the only thing that has made me smile today. #absvalueismostpowerfulthing #absvalueishigherpower
@JayTemple
@JayTemple 3 жыл бұрын
I had hoped you'd mention the corollary: This is why the antiderivative of 1 / x is not merely ln x + C but ln |x| + C.
@sgjuxta
@sgjuxta 3 жыл бұрын
I don't know why, but I've never liked using piece-wise functions for working with absolute value. I've always felt it was easier to just replace |x| with √(x^2), and then switch it back at the end.
@ZipplyZane
@ZipplyZane 3 жыл бұрын
You can put absolute value of x on the bottom, but it just gets a bit more complicated. (1/|x|)(x/|x|) = x/|x|^2 = x/x^2 = 1/x.
@bloodyadaku
@bloodyadaku 6 жыл бұрын
If you extend this definition into complex numbers, is f'(-2) still -1/2?
@arnavanand8037
@arnavanand8037 5 жыл бұрын
I think yes
@ashtonsmith1730
@ashtonsmith1730 4 жыл бұрын
yes
@dr.rahulgupta7573
@dr.rahulgupta7573 4 жыл бұрын
Excellent presentation of the topics. Thanks a lot.DrRahul Rohtak.India
@diegofelipe5253
@diegofelipe5253 6 жыл бұрын
Man. You are amazing
@scottalder2374
@scottalder2374 6 жыл бұрын
Are you hungover?
@johnhumberstone9674
@johnhumberstone9674 6 жыл бұрын
Really, you are just getting better and better......
@blackpenredpen
@blackpenredpen 6 жыл бұрын
John Humberstone thanks
@caducoelho2221
@caducoelho2221 6 жыл бұрын
I love watching your videos, hahaha #YAY
@Absilicon
@Absilicon 6 жыл бұрын
My guy, rocking his shades I see 😁
@-a5624
@-a5624 5 жыл бұрын
Thanks for this video :)
@flowerwithamachinegun2692
@flowerwithamachinegun2692 6 жыл бұрын
0:46 KEEP IT REAL, MAN
@Julian-ot8cs
@Julian-ot8cs 6 жыл бұрын
Can you do a video about the complex version of Ln(x)?
@prismoid00
@prismoid00 6 жыл бұрын
Julian Turner kzbin.info/www/bejne/oWPbaJ5njLWqjqc
@CharlesPanigeo
@CharlesPanigeo 6 жыл бұрын
He already has kzbin.info/www/bejne/oWPbaJ5njLWqjqc
@JamesLewis2
@JamesLewis2 6 жыл бұрын
More generally, as a function on the complex plane, ln(|x|) is not even complex-differentiable (but the derivative of ln(x) is 1/x for nonzero x); however, if the domain is restricted to the reals and the codomain is expanded to the complex numbers, then if x
@pierreabbat6157
@pierreabbat6157 6 жыл бұрын
The complex derivative does not exist on the branch cut, which is usually taken at the negative reals, so it still doesn't exist at -2. However, the discontinuity is removable, except at 0, where it's a pole. Btw, it's πi+ln(-x).
@BeauBreedlove
@BeauBreedlove 5 жыл бұрын
I think the most interesting conclusion to be drawn about this video is that it shows that the integral of dx/x is ln|x|
@JoshuaHillerup
@JoshuaHillerup 6 жыл бұрын
So, both are the antiderivative of 1/x, but the one with an absolute value is "better" because it has the same domain?
@awez_mehtab
@awez_mehtab 3 жыл бұрын
That look is my favourite 😎🔥
@ousmanelom6274
@ousmanelom6274 4 жыл бұрын
With you maths become very easy
@emiliadaria
@emiliadaria 6 жыл бұрын
them shades, tho' 😎
@chrisglosser7318
@chrisglosser7318 3 жыл бұрын
Let F(x) = sqrt(x^2)/x * ln (x^2/x). Then F’(x) = 1/x for all x in R and 0
@Armbrust666
@Armbrust666 3 жыл бұрын
The derivative of the absolute value function is almost the same as the sign function.
@jonasalberto1236
@jonasalberto1236 5 жыл бұрын
In the derivative of lnx we can also write 2/(|X|+X)
@thedoctor5036
@thedoctor5036 6 жыл бұрын
Best channel 😻
@mohammadelsayed5715
@mohammadelsayed5715 4 жыл бұрын
You look so cool 😎 , great video 😍
@armacham
@armacham 3 жыл бұрын
7:43 if x is a complex number, then abs(x)/x would not necessarily equal x/abs(x)
@supermonkygamers3
@supermonkygamers3 6 жыл бұрын
To differentiate abs(x), couldn't you just write it as sqrt(x^2) and then use the chain rule?
@samb443
@samb443 6 жыл бұрын
William Boitor yes, but only for real x
@PaddedShaman
@PaddedShaman 6 жыл бұрын
If you do that, you end up with 2x / 2sqrt(x^2), which does return 1 for x>0 and -1 for x
@teavea10
@teavea10 6 жыл бұрын
Not quite. x/sqrt(x^2) is OK for all x not equal to 0 since the numerator will carry the sign. But sqrt is always non negative, so sqrt(x^2) does not equal x for x
@michaelbobman7964
@michaelbobman7964 6 жыл бұрын
A more instructive thing to try would be to differentiate arctan(nx) and observe the behavior of the derivative in the neighborhood of x=0 as n approaches infinity If you wanted to be even more precise, you could instead take the same function multiplied by 2/π and do all this, but that's probably just being nit-pickey
@flamingpaper7751
@flamingpaper7751 6 жыл бұрын
Can you show a proof for the power rule ( d/dx( x^z ) = zx^(z-1)) where z is any complex number?
@carultch
@carultch Жыл бұрын
Given: f(x) =x^z Want to show that: f'(z) = z*x^(z - 1) Rewrite f(x) using complex exponential (still base e, but it's a multivalued function): f(x) = e^(log(x)*z) Take the derivative with the chain rule: f'(x) = d/dx e^(log(x)*z) = z*[d/dx log(x)]e^(log(x)*z) For any complex number: log(x) = ln(|x|) + i*(angle(x) + 2*pi*k) d/dx ln(|x|) = 1/x d/dx i*(angle(x) + 2*pi*k) will equal zero, as long as angle(x) is a constant. If x is fixed to the real numbers, then angle(x) will be a constant, until you cross zero. For integer exponents, we already have derivative rules that account for this problem point. For functions of x that have non-integer real exponents, they only have real solutions on the positive side of x=0 anyway, so it isn't really an issue of angle(x) changing. The entire imaginary part of log(x) is a constant, and thus has a derivative of zero. Thus: d/dx log(x) = 1/x, when x is limited to the real numbers Compose with what we did earlier: f'(x) = z/x*e^(log(x)*z) Since e^(log(x)*z) is just x^z, this gives us: f'(x) = z/x * x^z And with exponent properties, this reduces as: f'(x) = z*x^(z - 1) This proves the power rule for real values of x, with any complex exponent. It turns out, that it also works for complex values of x, but that's another proof.
@user_avadakedavra
@user_avadakedavra 6 жыл бұрын
could you explain about y' - y = 0 solution of y ln |y|= x+c |y| = e^(x+c) y = +-ce^x? i really get confused about this absolute value.
@yrcmurthy8323
@yrcmurthy8323 5 жыл бұрын
I know how to solve it
@yrcmurthy8323
@yrcmurthy8323 5 жыл бұрын
y = C • (e^2x)
@yrcmurthy8323
@yrcmurthy8323 5 жыл бұрын
Steps are right till the end, but if you have to remove absolute value, you have to square it. |y| = (e^x) • (e^C) |y| = C • (e^x), since e^c is a constant. Squaring a constant gives another constant. Hence y = C • (e^(2x))
@yrcmurthy8323
@yrcmurthy8323 5 жыл бұрын
Sorry for late response, didn't see your comment.
@alwysrite
@alwysrite 6 жыл бұрын
so much to learn !
@someone229
@someone229 6 жыл бұрын
Nice sun glasses you've got there😎
@machobunny1
@machobunny1 6 жыл бұрын
Seems to me that if y = abs(x) that y is always positive. Yet at about 6:50 you wrote that the value of y=abs(-x) is -x. Umm, really?
@bismandeep5266
@bismandeep5266 5 жыл бұрын
so derivative of abs (x) is basically the signum function?¿
@carultch
@carultch Жыл бұрын
Yes.
@alkamishra9974
@alkamishra9974 4 жыл бұрын
Can we not also use x/abs(x) because 1/abs(x) * x/abs(x) = x/abs(x)^2 =x/x^2(since x^2 will be the same for both +ved and -ves.) =1/x
@NickKravitz
@NickKravitz 6 жыл бұрын
Your future is so bright.. You gotta wear shades. Who says derivative domains cannot be sexy??
@Truth_101_
@Truth_101_ 4 жыл бұрын
what about when all of the lnx is in abs? like abs(lnx) ???? havent found an answer to it anywhere online. im trying to solve an intgeral from 1/e to e of abs(lnx)dx
@carultch
@carultch Жыл бұрын
You'd have to construct it as a piecewise function, to account for the cusp at x=1. When x=1, abs(ln(x)) = ln(x) So this means your integral has two intervals. integral -ln(x) dx from 1/e to 1 + integral ln(x) from 1 to 1/e Pull out the negative: -integral ln(x) dx from 1/e to 1 + integral ln(x) from 1 to 1/e Get the general integral of natural log: S ___ D ___ I + ___ln(x) _ 1 - ____1/x __ x x*ln(x) - integral 1 dx = (x - 1)*ln(x) Evaluate from 1/e to 1, and negate it: -[(1 - 1)*ln(1) - ((1/e - 1)*ln(1/e))] = 1 - 1/e evaluate from 1 to e: (e - 1)*ln(e) - (1- 1)*ln(1) = e - 1 Add it up: e - 1 + 1- 1/e = Result: e - 1/e
@fNktn
@fNktn 6 жыл бұрын
It should be x/|x| because if you go into higher dimensions it'll look the same (grad(|r|)=r/|r|) and wouldn't make sense the other way around.
@stephenstruble5442
@stephenstruble5442 3 жыл бұрын
I have a question. I noticed that you once stated that "The domain of the derivative is either equal to or less than the domain of our original function." However, consider f(x) = (x^2-1)/(x-1) The domain is (-∞, 1)∪(1, ∞). f'(x) = 1 and therefor the domain of f'(x) is (-∞, ∞). So, in this case is appears that the domain of the derivative is actually greater than the domain of the original function, albeit only by an infinitesimally small amount. The original function has a removable singularity. Removable singularities are differentiable, I believe. Could you explain why it appears that I just violated your original argument?
3 жыл бұрын
Removable singularities become differentiable if you define a function (called an extension) where the singularity has been removed (the "hole" has been filled in), in that case the new function is both defined and differentiable at that point. The original function will still be neither.
@robertdeaton4720
@robertdeaton4720 6 жыл бұрын
What number to the power of itself is -1? I can't seem to figure it out. I know you can solve it by taking e^W(ln(-1)) where W is the Lambert W function. but i cannot find how to take the W of pi * i.
@holyshit922
@holyshit922 6 жыл бұрын
Difference is in domain if x is subset of real numbers
@domanicmarcus2176
@domanicmarcus2176 5 жыл бұрын
Is absolute value of any number over itself equal to 1? My professor said no. So why then do they cancel each other out?
@carultch
@carultch Жыл бұрын
Only if it starts as positive. If it starts as negative, it equals -1.
@oracle7858
@oracle7858 5 жыл бұрын
If you just think about the graphs, it's pretty obvious there's a difference
@قوسالمطر-ض2غ
@قوسالمطر-ض2غ 6 жыл бұрын
thanks alot ❤
@user_avadakedavra
@user_avadakedavra 6 жыл бұрын
why do you have to hold that all the time? if i was making videos like this i would get a little mic that i could hang on my shirt or wear on my head thanks for the videos
@AndDiracisHisProphet
@AndDiracisHisProphet 6 жыл бұрын
deal with it
@nigit7451
@nigit7451 6 жыл бұрын
Actually, 1/x-1/x=0
@kinmanwong1763
@kinmanwong1763 2 жыл бұрын
If I didn't say x>0, I better said d/dx(ln x) = (ln x)/(xln x) than d/dx(ln x) = 1/x right? Because the domain of (ln x)/(xln x) is same as (ln x)'s.
@MathIguess
@MathIguess 5 жыл бұрын
Them shades though xD
@zelda12346
@zelda12346 6 жыл бұрын
I don't see why you can't dip into the Complex Realm. Cardano's Formula sometimes dips into and out of the Complex plane even if all three roots are real. The imaginary part of ln x with x < 0 is just a constant. The plot of ln x is just has two levels that are parallel to each other in x-y R2 plane when you throw in an imaginary z axis. And the derivative spat out is in fact a realm number. It goes into a wormhole and spits back out somewhere else in the same universe instead of disappearing completely. One of the more difficult bits I found in Complex Analysis was going from a 2D space to a 4D space. My professor used a domain containing a curve and an image of that curve under a transformation. It worked to a degree, but I think it would have been easier on the class if we had already been plotting complex outputs in a 3D space where the domain was strictly real for years or plotting the real part of an output with a complex domain.
@carultch
@carultch Жыл бұрын
You can dip into the complex number realm. It just isn't necessary to show the proof he intended to show.
@shenarat8903
@shenarat8903 6 жыл бұрын
Hey, I have a question that I haven't been able to solve. It is find an antiderivative for the function g, where g(x) = ln|x-1| / x-1
@carultch
@carultch Жыл бұрын
Given: g(x) = ln(|x - 1|)/(x - 1) Let G(x) be defined, such that G(x) is a function such that G'(x) = g(x). Set up integration by parts, with the log differentiated and the algebraic function integrated: S _ _ _ D _ _ _ _ _ _ _ I + _ _ _ ln(|x - 1|) _ _ 1/(x - 1) - _ _ _ 1/(x - 1) _ _ ln(|x - 1|) Construct result: ln(|x - 1|)^2 - integral ln(|x - 1|)/(x -1) dx Spot the original integral, and call it I. Equate to itself, and solve for I algebraically. I = ln(|x - 1|)^2 - I 2*I = ln(|x - 1|)^2 I = 1/2*ln(|x - 1|)^2 Conclusion: G(x) = 1/2*ln(|x - 1|)^2 + C
@yaleng4597
@yaleng4597 6 жыл бұрын
6:35 Chen Lu
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Yup!
@mike4ty4
@mike4ty4 6 жыл бұрын
Even better, the full indefinite integral of 1/x is NOT ln |x| + C. It's rather a piecewise function, or rather ln |x| plus a piecewise function whose domain has two connected components on which it is constant. In general, the general indefinite integral of any function whose domain is composed of more than one connected component will be equivalent up to adding a piecewise function constant on each connected component. E.g. if you wanted to integrate f(x) := 1/(x^2 - 1), whose domain has three connected components: (-oo, -1), (-1, 1), and (1, oo), you will need a function that is constant on all three: int 1/(x^2 - 1) dx = 1/2 [ln(1 - x) - ln(-x - 1)] + C_1 when x e (-oo, -1) 1/2 [ln(1 - x) - ln(x + 1)] + C_2 when x e (-1, 1) 1/2 [ln(x - 1) - ln(x + 1)] + C_3 when x e (1, oo) **NOT** int 1/(x^2 - 1) dx = 1/2 [ln |1 - x| + ln |x + 1|] + C (WRONG!) Keep that in mind! :)
@ss_avsmt
@ss_avsmt 3 жыл бұрын
What if we define ln(-1) as a complex number not similar to sqrt(-1). Will we have another branch of Mathematics on that?
@carultch
@carultch Жыл бұрын
We can and we do, have a definition of ln(-1). In fact, we have a multivalued function called complex log, that does exactly that. In general: log(z) = ln(|z|) + i*(angle(z) + 2*pi*k) where angle(z) is the angle CCW from positive real numbers. Also called arg(z) |z| is the magnitude or modulus of z and k is any arbitrary integer The principal value of this function, is the branch cut where k=0.
@vuyyurisatyasrinivasarao3140
@vuyyurisatyasrinivasarao3140 4 жыл бұрын
Super...
@safayiakako3416
@safayiakako3416 2 жыл бұрын
Thanks
@zaidsalameh1
@zaidsalameh1 6 жыл бұрын
Hi, i have an interesting question:- What is the Derivative/integral of Log base X of 2??
@trace8617
@trace8617 5 жыл бұрын
you cannot solve this by implicit, at least i tried and failed. rather, rewrite the log as the change in base formula, then take the derivative. with quotient rule or by power rule if you put log(x) to the -1 power. hope this helps
@LilyKazami
@LilyKazami 5 жыл бұрын
First, use logarithmic identity to get everything in terms of ln, getting ln 2/ln x. Since ln 2 is a constant we can factor it out of the derivative and integral. For derivative, it's a simple application of the chain rule to 1/ln x, and we end up with ln 2/x (ln x)^2. The integral is a bit stranger, since there is no way to represent the integration of 1/ln x with a finite amount of elementary functions. There is an extant function li(x) which is defined as the solution to this integral, but its values can only be approximated with our math. The answer would be ln 2 li(x) + c.
@soumyachandrakar9100
@soumyachandrakar9100 6 жыл бұрын
cool glasses #yay
@Harlequin314159
@Harlequin314159 6 жыл бұрын
A lesson all PhD students learn: when totally sleep deprived just wear glasses to hide your eyes!
@thomasq5186
@thomasq5186 6 жыл бұрын
What if complex values were valid? If f(x)=ln(x) and f'(x)=1/x, would f'(-2)= -1/2 or would it be something complex?
@dekrain
@dekrain 6 жыл бұрын
@Thomas Q: Well, ln(-z) = ln (-1 * z) = ln(-1) + ln z = i tau/2 + ln z. ln' (-z) = 0 + ln' z = ln' z. OR: ln' (-z) = 1/-z * -1 = 1/z = ln' z
@nathansauveur6704
@nathansauveur6704 6 жыл бұрын
Thomas Q The problem would be that are infinitely many solutions to ln(-2), namely ln(2)+(1+2k)pi*i, with k an whole number. So there would also be an infinite amount of derivatives, which we don't like. Or something like that, not sure though.
@samb443
@samb443 6 жыл бұрын
Nightish_one there are infinitely many solutions, but they all have the same derivative, so d/dx ln(x) at -2 is equal to -1/2
@nathansauveur6704
@nathansauveur6704 6 жыл бұрын
Sam M Ahh, could be. Not that I disbelief you or anything, I just don't know enough about this stuff to really think about it. Thanks for sharing your answer though :)
@medpop459
@medpop459 6 жыл бұрын
what about derivative of abs(abs(x)) ????
@gregoriousmaths266
@gregoriousmaths266 5 жыл бұрын
Medpop that’s just equal to abs(x)
@pedrosso0
@pedrosso0 3 жыл бұрын
"And of course we are keeping everything real in this video" Why is that 'Of course' If we go to the complex world and differentiate it we find d/dx ln(x) = 1/x
@tajpa100
@tajpa100 6 жыл бұрын
Is the derivative x over abs(x)?
@Kitulous
@Kitulous 6 жыл бұрын
Yes, it's either that, or |x|/x, or sign(x), x≠0. Use whatever you want. Technically, from the definition, the abs is on the bottom, but if it was on the top, the answer would be the same.
@gustavosedano294
@gustavosedano294 6 жыл бұрын
#Yay
@oscartroncoso2585
@oscartroncoso2585 6 жыл бұрын
You should wear shades more!
@sinom
@sinom 6 жыл бұрын
Those shades O.o
@nournote
@nournote 5 жыл бұрын
8:00 it surely would have been much betterr to write x/|x|
@Humongastone
@Humongastone 6 жыл бұрын
But if he wrote x/|x| instead for the chain rule part, then he would get 1/x^3 as derivative of ln|x|??
@ZipplyZane
@ZipplyZane 6 жыл бұрын
Garand Chua no, he'd get 1/|x| * x/|x| = x/(|x|^2) = x/(x^2) = 1/x
@carl4578
@carl4578 6 жыл бұрын
is the derivative of arg(z) a thing?
@CharlesPanigeo
@CharlesPanigeo 6 жыл бұрын
Arg(z) does not have a complex derivative as it doesn't satisfy the Cauchy-Riemann conditions. More info: mathworld.wolfram.com/Cauchy-RiemannEquations.html
@sinom
@sinom 6 жыл бұрын
I would say: f(x) = arg(x). Df=R/0 f'(x) = 0
@michaelbobman7964
@michaelbobman7964 6 жыл бұрын
Arg z fails to satisfy the cauchy reimann conditions. Magnitude and conjugation also fail the CR conditions, actually, if I'm recalling correctly.
@mehdialami2481
@mehdialami2481 6 жыл бұрын
those glasses though :o
@tjtaneja1285
@tjtaneja1285 6 жыл бұрын
Mans out here in goggles and shit
@helloitsme7553
@helloitsme7553 6 жыл бұрын
Can you please put your video back on f'(x) i had the answers : a. [0,5). b. (5,6]. c. It doesnt. c. x=5. c. (2,4) d. [0,2) U (5,6] e. x=4
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Sorry, I removed the original vid since I made a mistake in there. But I uploaded the edited one. : )
@trangium
@trangium 6 жыл бұрын
#keepingitreal
@TheCarlosaceshigh
@TheCarlosaceshigh 6 жыл бұрын
can someone help me: Be f(x) = g(x-sin4x), g' (π/2) = √2/2, f' (π/2)=?..
@aashsyed1277
@aashsyed1277 3 жыл бұрын
yes sir
@ahmadabualrub2590
@ahmadabualrub2590 Жыл бұрын
good
@admink8662
@admink8662 6 жыл бұрын
😎 yay~
@vicentepoblete6627
@vicentepoblete6627 6 жыл бұрын
#YAY ! ! !
@rifaturrahman5779
@rifaturrahman5779 5 жыл бұрын
Ah, Is ln|x| differentiable in the first place? I mean it's not continuos, so shouldn't be differentiable
@carultch
@carultch Жыл бұрын
It's differentiable everywhere, other than the singularity at x=0.
@shivimish9962
@shivimish9962 6 жыл бұрын
Shady maths 😎
@dynamic-eu1794
@dynamic-eu1794 6 жыл бұрын
I feel like I've seen this vid ages ago
@LFSDK
@LFSDK 6 жыл бұрын
I can’t just take the absolute value of myself.. I’m zero.
@technicallightingfriend4247
@technicallightingfriend4247 Жыл бұрын
If you take in the bottom So |x|.|x|=(|x|) ^2=x² Then x/x²=1/x ahh!
@yahianattouf3454
@yahianattouf3454 3 жыл бұрын
يو ار دونكي 😂😂😂
@olegt962
@olegt962 6 жыл бұрын
#GLASSYAY!!
@catoyuvone8475
@catoyuvone8475 6 жыл бұрын
#YIAY
@deoxal7947
@deoxal7947 6 жыл бұрын
Disappointed, wanted him to evaluate it negative values.
@AdityaBdamnson
@AdityaBdamnson 6 жыл бұрын
S W A G
Why is the derivative of e^x equal to e^x?
11:59
blackpenredpen
Рет қаралды 403 М.
The Limit (do not use L'Hospital rule)
12:08
blackpenredpen
Рет қаралды 698 М.
УНО Реверс в Амонг Ас : игра на выбывание
0:19
Фани Хани
Рет қаралды 1,3 МЛН
I Sent a Subscriber to Disneyland
0:27
MrBeast
Рет қаралды 104 МЛН
진짜✅ 아님 가짜❌???
0:21
승비니 Seungbini
Рет қаралды 10 МЛН
Integrate 1/(1+x^3)
24:56
Prime Newtons
Рет қаралды 113 М.
Solutions to x^y=y^x
13:09
blackpenredpen
Рет қаралды 1,1 МЛН
How to do two (or more) integrals with just one
18:03
Morphocular
Рет қаралды 390 М.
A Brilliant Limit
16:58
blackpenredpen
Рет қаралды 1,4 МЛН
so you want a VERY HARD math question?!
13:51
blackpenredpen
Рет қаралды 1 МЛН
Why I don't teach LIATE (integration by parts trick)
14:54
blackpenredpen
Рет қаралды 358 М.
What Lies Between a Function and Its Derivative? | Fractional Calculus
25:27
What does the second derivative actually do in math and physics?
15:19
Is the function continuous?
12:42
Prime Newtons
Рет қаралды 96 М.
Derivative  of absolute value  function
8:04
Prime Newtons
Рет қаралды 70 М.
УНО Реверс в Амонг Ас : игра на выбывание
0:19
Фани Хани
Рет қаралды 1,3 МЛН