"If you ever feel negative, just plug absolute value around you and you'll feel positive". He is the Bob Ross of math
@Invalid5716 жыл бұрын
Someone partied too hard last night. 😎
@ninjakawasaki19726 жыл бұрын
Went from absolut vodka to absolute value real quick
@kwirny5 жыл бұрын
@@ninjakawasaki1972 Haha
@ShAlAmAnAyA35 жыл бұрын
that part hahaha
@romainedixon45606 жыл бұрын
Next time i feel depressed im gonna stand between two sticks #absvalueismostpowerfulthing
@arnavanand80375 жыл бұрын
"We are not going to talk about complex values here" I feel betrayed
@carsonyt53066 жыл бұрын
Actually the derivative of the complex value of ln(x) for x
@nicholasjuricic36832 жыл бұрын
Can anyone answer: does this mean ln x and ln |x| differ by a constant? Why / why not.
@seiken21062 жыл бұрын
@@nicholasjuricic3683 I think neither of those is the difference, maybe it's the domain of the function For ln x: x must be >0 For ln|x| : x can be any number other than 0
@borg9726 жыл бұрын
This video is gold. I would mention also the integral of 1/x because why it is ln|x| with absolute value is a very common question!
@carultch Жыл бұрын
If you look at the full picture of logarithms in complex numbers, it explains why. complex log(x) = ln(|x|) + i*(angle(x) + 2*pi*k) where |x| is the magnitude of x, and angle(x) is the angle in radians to x, ccw from the positive real numbers. The k is any arbitrary integer. For positive real values of x, angle(x)=0, and we can keep it simple and let k=0, and see that it is simply equal to ln(x). For negative real values of x, angle(x) = pi. The imaginary part is just a constant of i*pi. Let the arbitrary constant of integration be C - i*pi, and you can see that it salvages the result ln(|x|). It is a legal move to have a different arbitrary constant on both sides of the vertical asymptote, because you can't integrate across a vertical asymptote, when the improper integral on either or both sides is divergent.
@adilsonfranciscoquissai38885 жыл бұрын
The smallest details can change everything. Thanks again for that
@MrHatoi5 жыл бұрын
You can also set the absolute value of x to be equal to sqrt(x^2), since the square root is always positive, so the square and square root cancel and preserve the magnitude of the number, but not the sign. Then you can take the derivative of this and get x/sqrt(x^2), which is the same as x/|x|.
@FGj-xj7rd6 жыл бұрын
Math is Thug Life 🚬😎
@fountainovaphilosopher81126 жыл бұрын
0:45 "keepin' it real"
@blackpenredpen6 жыл бұрын
Ognjen Kovačević definitely
@xevira4 жыл бұрын
I know this is an old video, but I wanted to say "When your calculus is so LIT that you need to wear sunglasses to see the board properly."
@Spectrojamz4 жыл бұрын
😂
@marvhartigan36774 жыл бұрын
haha well said xevira
@primthon95966 жыл бұрын
I always watch your videos before bed 😂 they are great keep going ❤️
@MathIguess5 жыл бұрын
"If you ever feel negative, just take the absolute value of yourself" xD
@no-po9nv4 жыл бұрын
I'm in grad school and your channel keeps popping up! You've helped me solve two homework problems! You are too cool for school, bro!:)
@cpotisch4 жыл бұрын
Alternate method: d/dx(lnx) = 1/x for x>0, and, by the chain rule, d/dx(ln(-x) = 1/(-x)*(-1) = 1/x for x
@goliathcleric6 жыл бұрын
I've been staring at the bar all day, craving a drink. That absolute value joke is the only thing that has made me smile today. #absvalueismostpowerfulthing #absvalueishigherpower
@JayTemple3 жыл бұрын
I had hoped you'd mention the corollary: This is why the antiderivative of 1 / x is not merely ln x + C but ln |x| + C.
@sgjuxta3 жыл бұрын
I don't know why, but I've never liked using piece-wise functions for working with absolute value. I've always felt it was easier to just replace |x| with √(x^2), and then switch it back at the end.
@ZipplyZane3 жыл бұрын
You can put absolute value of x on the bottom, but it just gets a bit more complicated. (1/|x|)(x/|x|) = x/|x|^2 = x/x^2 = 1/x.
@bloodyadaku6 жыл бұрын
If you extend this definition into complex numbers, is f'(-2) still -1/2?
@arnavanand80375 жыл бұрын
I think yes
@ashtonsmith17304 жыл бұрын
yes
@dr.rahulgupta75734 жыл бұрын
Excellent presentation of the topics. Thanks a lot.DrRahul Rohtak.India
@diegofelipe52536 жыл бұрын
Man. You are amazing
@scottalder23746 жыл бұрын
Are you hungover?
@johnhumberstone96746 жыл бұрын
Really, you are just getting better and better......
@blackpenredpen6 жыл бұрын
John Humberstone thanks
@caducoelho22216 жыл бұрын
I love watching your videos, hahaha #YAY
@Absilicon6 жыл бұрын
My guy, rocking his shades I see 😁
@-a56245 жыл бұрын
Thanks for this video :)
@flowerwithamachinegun26926 жыл бұрын
0:46 KEEP IT REAL, MAN
@Julian-ot8cs6 жыл бұрын
Can you do a video about the complex version of Ln(x)?
He already has kzbin.info/www/bejne/oWPbaJ5njLWqjqc
@JamesLewis26 жыл бұрын
More generally, as a function on the complex plane, ln(|x|) is not even complex-differentiable (but the derivative of ln(x) is 1/x for nonzero x); however, if the domain is restricted to the reals and the codomain is expanded to the complex numbers, then if x
@pierreabbat61576 жыл бұрын
The complex derivative does not exist on the branch cut, which is usually taken at the negative reals, so it still doesn't exist at -2. However, the discontinuity is removable, except at 0, where it's a pole. Btw, it's πi+ln(-x).
@BeauBreedlove5 жыл бұрын
I think the most interesting conclusion to be drawn about this video is that it shows that the integral of dx/x is ln|x|
@JoshuaHillerup6 жыл бұрын
So, both are the antiderivative of 1/x, but the one with an absolute value is "better" because it has the same domain?
@awez_mehtab3 жыл бұрын
That look is my favourite 😎🔥
@ousmanelom62744 жыл бұрын
With you maths become very easy
@emiliadaria6 жыл бұрын
them shades, tho' 😎
@chrisglosser73183 жыл бұрын
Let F(x) = sqrt(x^2)/x * ln (x^2/x). Then F’(x) = 1/x for all x in R and 0
@Armbrust6663 жыл бұрын
The derivative of the absolute value function is almost the same as the sign function.
@jonasalberto12365 жыл бұрын
In the derivative of lnx we can also write 2/(|X|+X)
@thedoctor50366 жыл бұрын
Best channel 😻
@mohammadelsayed57154 жыл бұрын
You look so cool 😎 , great video 😍
@armacham3 жыл бұрын
7:43 if x is a complex number, then abs(x)/x would not necessarily equal x/abs(x)
@supermonkygamers36 жыл бұрын
To differentiate abs(x), couldn't you just write it as sqrt(x^2) and then use the chain rule?
@samb4436 жыл бұрын
William Boitor yes, but only for real x
@PaddedShaman6 жыл бұрын
If you do that, you end up with 2x / 2sqrt(x^2), which does return 1 for x>0 and -1 for x
@teavea106 жыл бұрын
Not quite. x/sqrt(x^2) is OK for all x not equal to 0 since the numerator will carry the sign. But sqrt is always non negative, so sqrt(x^2) does not equal x for x
@michaelbobman79646 жыл бұрын
A more instructive thing to try would be to differentiate arctan(nx) and observe the behavior of the derivative in the neighborhood of x=0 as n approaches infinity If you wanted to be even more precise, you could instead take the same function multiplied by 2/π and do all this, but that's probably just being nit-pickey
@flamingpaper77516 жыл бұрын
Can you show a proof for the power rule ( d/dx( x^z ) = zx^(z-1)) where z is any complex number?
@carultch Жыл бұрын
Given: f(x) =x^z Want to show that: f'(z) = z*x^(z - 1) Rewrite f(x) using complex exponential (still base e, but it's a multivalued function): f(x) = e^(log(x)*z) Take the derivative with the chain rule: f'(x) = d/dx e^(log(x)*z) = z*[d/dx log(x)]e^(log(x)*z) For any complex number: log(x) = ln(|x|) + i*(angle(x) + 2*pi*k) d/dx ln(|x|) = 1/x d/dx i*(angle(x) + 2*pi*k) will equal zero, as long as angle(x) is a constant. If x is fixed to the real numbers, then angle(x) will be a constant, until you cross zero. For integer exponents, we already have derivative rules that account for this problem point. For functions of x that have non-integer real exponents, they only have real solutions on the positive side of x=0 anyway, so it isn't really an issue of angle(x) changing. The entire imaginary part of log(x) is a constant, and thus has a derivative of zero. Thus: d/dx log(x) = 1/x, when x is limited to the real numbers Compose with what we did earlier: f'(x) = z/x*e^(log(x)*z) Since e^(log(x)*z) is just x^z, this gives us: f'(x) = z/x * x^z And with exponent properties, this reduces as: f'(x) = z*x^(z - 1) This proves the power rule for real values of x, with any complex exponent. It turns out, that it also works for complex values of x, but that's another proof.
@user_avadakedavra6 жыл бұрын
could you explain about y' - y = 0 solution of y ln |y|= x+c |y| = e^(x+c) y = +-ce^x? i really get confused about this absolute value.
@yrcmurthy83235 жыл бұрын
I know how to solve it
@yrcmurthy83235 жыл бұрын
y = C • (e^2x)
@yrcmurthy83235 жыл бұрын
Steps are right till the end, but if you have to remove absolute value, you have to square it. |y| = (e^x) • (e^C) |y| = C • (e^x), since e^c is a constant. Squaring a constant gives another constant. Hence y = C • (e^(2x))
@yrcmurthy83235 жыл бұрын
Sorry for late response, didn't see your comment.
@alwysrite6 жыл бұрын
so much to learn !
@someone2296 жыл бұрын
Nice sun glasses you've got there😎
@machobunny16 жыл бұрын
Seems to me that if y = abs(x) that y is always positive. Yet at about 6:50 you wrote that the value of y=abs(-x) is -x. Umm, really?
@bismandeep52665 жыл бұрын
so derivative of abs (x) is basically the signum function?¿
@carultch Жыл бұрын
Yes.
@alkamishra99744 жыл бұрын
Can we not also use x/abs(x) because 1/abs(x) * x/abs(x) = x/abs(x)^2 =x/x^2(since x^2 will be the same for both +ved and -ves.) =1/x
@NickKravitz6 жыл бұрын
Your future is so bright.. You gotta wear shades. Who says derivative domains cannot be sexy??
@Truth_101_4 жыл бұрын
what about when all of the lnx is in abs? like abs(lnx) ???? havent found an answer to it anywhere online. im trying to solve an intgeral from 1/e to e of abs(lnx)dx
@carultch Жыл бұрын
You'd have to construct it as a piecewise function, to account for the cusp at x=1. When x=1, abs(ln(x)) = ln(x) So this means your integral has two intervals. integral -ln(x) dx from 1/e to 1 + integral ln(x) from 1 to 1/e Pull out the negative: -integral ln(x) dx from 1/e to 1 + integral ln(x) from 1 to 1/e Get the general integral of natural log: S ___ D ___ I + ___ln(x) _ 1 - ____1/x __ x x*ln(x) - integral 1 dx = (x - 1)*ln(x) Evaluate from 1/e to 1, and negate it: -[(1 - 1)*ln(1) - ((1/e - 1)*ln(1/e))] = 1 - 1/e evaluate from 1 to e: (e - 1)*ln(e) - (1- 1)*ln(1) = e - 1 Add it up: e - 1 + 1- 1/e = Result: e - 1/e
@fNktn6 жыл бұрын
It should be x/|x| because if you go into higher dimensions it'll look the same (grad(|r|)=r/|r|) and wouldn't make sense the other way around.
@stephenstruble54423 жыл бұрын
I have a question. I noticed that you once stated that "The domain of the derivative is either equal to or less than the domain of our original function." However, consider f(x) = (x^2-1)/(x-1) The domain is (-∞, 1)∪(1, ∞). f'(x) = 1 and therefor the domain of f'(x) is (-∞, ∞). So, in this case is appears that the domain of the derivative is actually greater than the domain of the original function, albeit only by an infinitesimally small amount. The original function has a removable singularity. Removable singularities are differentiable, I believe. Could you explain why it appears that I just violated your original argument?
3 жыл бұрын
Removable singularities become differentiable if you define a function (called an extension) where the singularity has been removed (the "hole" has been filled in), in that case the new function is both defined and differentiable at that point. The original function will still be neither.
@robertdeaton47206 жыл бұрын
What number to the power of itself is -1? I can't seem to figure it out. I know you can solve it by taking e^W(ln(-1)) where W is the Lambert W function. but i cannot find how to take the W of pi * i.
@holyshit9226 жыл бұрын
Difference is in domain if x is subset of real numbers
@domanicmarcus21765 жыл бұрын
Is absolute value of any number over itself equal to 1? My professor said no. So why then do they cancel each other out?
@carultch Жыл бұрын
Only if it starts as positive. If it starts as negative, it equals -1.
@oracle78585 жыл бұрын
If you just think about the graphs, it's pretty obvious there's a difference
@قوسالمطر-ض2غ6 жыл бұрын
thanks alot ❤
@user_avadakedavra6 жыл бұрын
why do you have to hold that all the time? if i was making videos like this i would get a little mic that i could hang on my shirt or wear on my head thanks for the videos
@AndDiracisHisProphet6 жыл бұрын
deal with it
@nigit74516 жыл бұрын
Actually, 1/x-1/x=0
@kinmanwong17632 жыл бұрын
If I didn't say x>0, I better said d/dx(ln x) = (ln x)/(xln x) than d/dx(ln x) = 1/x right? Because the domain of (ln x)/(xln x) is same as (ln x)'s.
@MathIguess5 жыл бұрын
Them shades though xD
@zelda123466 жыл бұрын
I don't see why you can't dip into the Complex Realm. Cardano's Formula sometimes dips into and out of the Complex plane even if all three roots are real. The imaginary part of ln x with x < 0 is just a constant. The plot of ln x is just has two levels that are parallel to each other in x-y R2 plane when you throw in an imaginary z axis. And the derivative spat out is in fact a realm number. It goes into a wormhole and spits back out somewhere else in the same universe instead of disappearing completely. One of the more difficult bits I found in Complex Analysis was going from a 2D space to a 4D space. My professor used a domain containing a curve and an image of that curve under a transformation. It worked to a degree, but I think it would have been easier on the class if we had already been plotting complex outputs in a 3D space where the domain was strictly real for years or plotting the real part of an output with a complex domain.
@carultch Жыл бұрын
You can dip into the complex number realm. It just isn't necessary to show the proof he intended to show.
@shenarat89036 жыл бұрын
Hey, I have a question that I haven't been able to solve. It is find an antiderivative for the function g, where g(x) = ln|x-1| / x-1
@carultch Жыл бұрын
Given: g(x) = ln(|x - 1|)/(x - 1) Let G(x) be defined, such that G(x) is a function such that G'(x) = g(x). Set up integration by parts, with the log differentiated and the algebraic function integrated: S _ _ _ D _ _ _ _ _ _ _ I + _ _ _ ln(|x - 1|) _ _ 1/(x - 1) - _ _ _ 1/(x - 1) _ _ ln(|x - 1|) Construct result: ln(|x - 1|)^2 - integral ln(|x - 1|)/(x -1) dx Spot the original integral, and call it I. Equate to itself, and solve for I algebraically. I = ln(|x - 1|)^2 - I 2*I = ln(|x - 1|)^2 I = 1/2*ln(|x - 1|)^2 Conclusion: G(x) = 1/2*ln(|x - 1|)^2 + C
@yaleng45976 жыл бұрын
6:35 Chen Lu
@blackpenredpen6 жыл бұрын
Yup!
@mike4ty46 жыл бұрын
Even better, the full indefinite integral of 1/x is NOT ln |x| + C. It's rather a piecewise function, or rather ln |x| plus a piecewise function whose domain has two connected components on which it is constant. In general, the general indefinite integral of any function whose domain is composed of more than one connected component will be equivalent up to adding a piecewise function constant on each connected component. E.g. if you wanted to integrate f(x) := 1/(x^2 - 1), whose domain has three connected components: (-oo, -1), (-1, 1), and (1, oo), you will need a function that is constant on all three: int 1/(x^2 - 1) dx = 1/2 [ln(1 - x) - ln(-x - 1)] + C_1 when x e (-oo, -1) 1/2 [ln(1 - x) - ln(x + 1)] + C_2 when x e (-1, 1) 1/2 [ln(x - 1) - ln(x + 1)] + C_3 when x e (1, oo) **NOT** int 1/(x^2 - 1) dx = 1/2 [ln |1 - x| + ln |x + 1|] + C (WRONG!) Keep that in mind! :)
@ss_avsmt3 жыл бұрын
What if we define ln(-1) as a complex number not similar to sqrt(-1). Will we have another branch of Mathematics on that?
@carultch Жыл бұрын
We can and we do, have a definition of ln(-1). In fact, we have a multivalued function called complex log, that does exactly that. In general: log(z) = ln(|z|) + i*(angle(z) + 2*pi*k) where angle(z) is the angle CCW from positive real numbers. Also called arg(z) |z| is the magnitude or modulus of z and k is any arbitrary integer The principal value of this function, is the branch cut where k=0.
@vuyyurisatyasrinivasarao31404 жыл бұрын
Super...
@safayiakako34162 жыл бұрын
Thanks
@zaidsalameh16 жыл бұрын
Hi, i have an interesting question:- What is the Derivative/integral of Log base X of 2??
@trace86175 жыл бұрын
you cannot solve this by implicit, at least i tried and failed. rather, rewrite the log as the change in base formula, then take the derivative. with quotient rule or by power rule if you put log(x) to the -1 power. hope this helps
@LilyKazami5 жыл бұрын
First, use logarithmic identity to get everything in terms of ln, getting ln 2/ln x. Since ln 2 is a constant we can factor it out of the derivative and integral. For derivative, it's a simple application of the chain rule to 1/ln x, and we end up with ln 2/x (ln x)^2. The integral is a bit stranger, since there is no way to represent the integration of 1/ln x with a finite amount of elementary functions. There is an extant function li(x) which is defined as the solution to this integral, but its values can only be approximated with our math. The answer would be ln 2 li(x) + c.
@soumyachandrakar91006 жыл бұрын
cool glasses #yay
@Harlequin3141596 жыл бұрын
A lesson all PhD students learn: when totally sleep deprived just wear glasses to hide your eyes!
@thomasq51866 жыл бұрын
What if complex values were valid? If f(x)=ln(x) and f'(x)=1/x, would f'(-2)= -1/2 or would it be something complex?
@dekrain6 жыл бұрын
@Thomas Q: Well, ln(-z) = ln (-1 * z) = ln(-1) + ln z = i tau/2 + ln z. ln' (-z) = 0 + ln' z = ln' z. OR: ln' (-z) = 1/-z * -1 = 1/z = ln' z
@nathansauveur67046 жыл бұрын
Thomas Q The problem would be that are infinitely many solutions to ln(-2), namely ln(2)+(1+2k)pi*i, with k an whole number. So there would also be an infinite amount of derivatives, which we don't like. Or something like that, not sure though.
@samb4436 жыл бұрын
Nightish_one there are infinitely many solutions, but they all have the same derivative, so d/dx ln(x) at -2 is equal to -1/2
@nathansauveur67046 жыл бұрын
Sam M Ahh, could be. Not that I disbelief you or anything, I just don't know enough about this stuff to really think about it. Thanks for sharing your answer though :)
@medpop4596 жыл бұрын
what about derivative of abs(abs(x)) ????
@gregoriousmaths2665 жыл бұрын
Medpop that’s just equal to abs(x)
@pedrosso03 жыл бұрын
"And of course we are keeping everything real in this video" Why is that 'Of course' If we go to the complex world and differentiate it we find d/dx ln(x) = 1/x
@tajpa1006 жыл бұрын
Is the derivative x over abs(x)?
@Kitulous6 жыл бұрын
Yes, it's either that, or |x|/x, or sign(x), x≠0. Use whatever you want. Technically, from the definition, the abs is on the bottom, but if it was on the top, the answer would be the same.
@gustavosedano2946 жыл бұрын
#Yay
@oscartroncoso25856 жыл бұрын
You should wear shades more!
@sinom6 жыл бұрын
Those shades O.o
@nournote5 жыл бұрын
8:00 it surely would have been much betterr to write x/|x|
@Humongastone6 жыл бұрын
But if he wrote x/|x| instead for the chain rule part, then he would get 1/x^3 as derivative of ln|x|??
@ZipplyZane6 жыл бұрын
Garand Chua no, he'd get 1/|x| * x/|x| = x/(|x|^2) = x/(x^2) = 1/x
@carl45786 жыл бұрын
is the derivative of arg(z) a thing?
@CharlesPanigeo6 жыл бұрын
Arg(z) does not have a complex derivative as it doesn't satisfy the Cauchy-Riemann conditions. More info: mathworld.wolfram.com/Cauchy-RiemannEquations.html
@sinom6 жыл бұрын
I would say: f(x) = arg(x). Df=R/0 f'(x) = 0
@michaelbobman79646 жыл бұрын
Arg z fails to satisfy the cauchy reimann conditions. Magnitude and conjugation also fail the CR conditions, actually, if I'm recalling correctly.
@mehdialami24816 жыл бұрын
those glasses though :o
@tjtaneja12856 жыл бұрын
Mans out here in goggles and shit
@helloitsme75536 жыл бұрын
Can you please put your video back on f'(x) i had the answers : a. [0,5). b. (5,6]. c. It doesnt. c. x=5. c. (2,4) d. [0,2) U (5,6] e. x=4
@blackpenredpen6 жыл бұрын
Sorry, I removed the original vid since I made a mistake in there. But I uploaded the edited one. : )
@trangium6 жыл бұрын
#keepingitreal
@TheCarlosaceshigh6 жыл бұрын
can someone help me: Be f(x) = g(x-sin4x), g' (π/2) = √2/2, f' (π/2)=?..
@aashsyed12773 жыл бұрын
yes sir
@ahmadabualrub2590 Жыл бұрын
good
@admink86626 жыл бұрын
😎 yay~
@vicentepoblete66276 жыл бұрын
#YAY ! ! !
@rifaturrahman57795 жыл бұрын
Ah, Is ln|x| differentiable in the first place? I mean it's not continuos, so shouldn't be differentiable
@carultch Жыл бұрын
It's differentiable everywhere, other than the singularity at x=0.
@shivimish99626 жыл бұрын
Shady maths 😎
@dynamic-eu17946 жыл бұрын
I feel like I've seen this vid ages ago
@LFSDK6 жыл бұрын
I can’t just take the absolute value of myself.. I’m zero.
@technicallightingfriend4247 Жыл бұрын
If you take in the bottom So |x|.|x|=(|x|) ^2=x² Then x/x²=1/x ahh!
@yahianattouf34543 жыл бұрын
يو ار دونكي 😂😂😂
@olegt9626 жыл бұрын
#GLASSYAY!!
@catoyuvone84756 жыл бұрын
#YIAY
@deoxal79476 жыл бұрын
Disappointed, wanted him to evaluate it negative values.