Solutions to x^y=y^x

  Рет қаралды 1,143,729

blackpenredpen

blackpenredpen

Күн бұрын

We will solve one of the most interesting and classic exponential equations x^y=y^x
We will use a parametrization to find all the solutions to x^y=y^x
Here's how to solve x^2=2^x (ft. Lambert W function) 👉 • ALL solutions to x^2=2^x
Subscribe for more math for fun videos 👉 ‪@blackpenredpen‬
For more calculus tutorials, check out my new channel @just calculus
👉 / justcalculus

Пікірлер: 1 200
@blackpenredpen
@blackpenredpen 3 жыл бұрын
If you liked this video, then you would probably like this one too. Find all solutions to x^2=2^x (ft Lambert W function) 👉 kzbin.info/www/bejne/pJWkYaZ8lJWFrc0
@physicsmath8293
@physicsmath8293 2 жыл бұрын
X € R /X#0
@mannypaul5744
@mannypaul5744 5 жыл бұрын
Your ability to effortlessly switch between markers is majestic.
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Thank you!!!
@amirnuriev9092
@amirnuriev9092 5 жыл бұрын
Nice
@DarthAlphaTheGreat
@DarthAlphaTheGreat 4 жыл бұрын
Manny Paul A skill you can’t help but learn when you teach lol
@JitendraKumar-eu1pq
@JitendraKumar-eu1pq 4 жыл бұрын
@@DarthAlphaTheGreat Xxx
@shankarlal3258
@shankarlal3258 4 жыл бұрын
@@amirnuriev9092 was
@maciejkubera1536
@maciejkubera1536 6 жыл бұрын
It's interesting, that if You draw a graph showing x^y=y^x and allow x=y, You get some curve and a ray y=x and the ray intersects the curve in point (e,e). :) Awesome!
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Yay!!Yay!!
@Kino-Imsureq
@Kino-Imsureq 6 жыл бұрын
thus it shows every possible x and y value where x^y = y^x
@SPACKlick
@SPACKlick 6 жыл бұрын
I think the more interesting potion of the graph is the discontinuous section where one of X or Y is negative.
@davidramitdown
@davidramitdown 5 жыл бұрын
OMG this is why I love the internet
@guythat779
@guythat779 5 жыл бұрын
It should intersect e,e and pi pi too It should intersect every point on x=y
@GreenMeansGOF
@GreenMeansGOF 6 жыл бұрын
Use this to impress girls. LOL. I’ll let you know if it works for me.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
GreenMeansGO : )
@hikarifathan5143
@hikarifathan5143 6 жыл бұрын
LOL
@whitewalker608
@whitewalker608 6 жыл бұрын
How did it go?
@davidbrisbane7206
@davidbrisbane7206 6 жыл бұрын
It works with girls!
@Ujwal5555
@Ujwal5555 6 жыл бұрын
@@davidbrisbane7206 what age-group ?
@dakotaroberson9921
@dakotaroberson9921 6 жыл бұрын
I love these no-effort thumbnails, please keep them going 😂
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Casey Roberson lol : )
@15schaa
@15schaa 6 жыл бұрын
They legendary.
@RubyPiec
@RubyPiec 4 жыл бұрын
@@15schaa They're*
@wilfriedsteinbach8700
@wilfriedsteinbach8700 4 жыл бұрын
@@RubyPiec shut
@JashXD
@JashXD 3 жыл бұрын
@@wilfriedsteinbach8700 up
@gordonstallings2518
@gordonstallings2518 5 жыл бұрын
If you let t = (D+1)/D, where D is integer, you can find all solutions that do not contain radicals. Example: t = 3/2 gives x = 9/4 and y = 27/8.
@EebstertheGreat
@EebstertheGreat 4 жыл бұрын
This yields the sequence of ordered pairs {(2, 4), (9/4, 27/8), (64/27, 256/81), (625/256, 3125/1024), (7776/3125, 46656/15625), ...}, which lists every rational solution. A simple way to generate it is: x = (1+1/D)^D y = (1+1/D)^(D+1). Thus evidently the rational solutions, when ordered in this way (or equivalently, by the size of the denominator when expressed in least terms) approach the irrational solution x = y = e, where the two parts of the curve x^y=y^x intersect.
@MichaelRothwell1
@MichaelRothwell1 2 жыл бұрын
Very nice! This certainly gives rational solutions, since 1/(t-1)=D is an integer. Probably it gives all rational solutions, but this requires proving.
@duckymomo7935
@duckymomo7935 6 жыл бұрын
Parametric generator for x^y = y^x, wow
@themeeman
@themeeman 6 жыл бұрын
wow
@lostsouldier
@lostsouldier 6 жыл бұрын
Wow
@blackpenredpen
@blackpenredpen 6 жыл бұрын
I was like wow when I saw it too!
@JSSTyger
@JSSTyger 6 жыл бұрын
I took 10 courses in math in college en route to a math apps minor and your videos still amaze me.
@projectnemesi5950
@projectnemesi5950 6 жыл бұрын
Here is what I did. First, I took the log of both sides. Thus, yln(x) = xln(y). Then I moved both sides over such that ln(y)/ln(x) = y/x. The problem now looks very simple, its simply saying that both side should be of the same ratio. I then assumed some parameter "c" between both sides of the equality. (We possibly could have done this at the beginning, but that way would have been very difficult). So now we have ln(y)/ln(x) = c and y/x = c. Then we use the linearity of these equations to make our lives very easy. ln(y) = cln(x) and y = cx. Now we simplify the first equation, y = x^c. These two equations imply that x^c = cx. Ah, now both sides have the same base, we can solve for c. x^c * x^-1 = c simplifies to x^(c-1) = c. Taking the (c-1) root of both sides simplifies the equations to x = c^(1/(c-1)). And there you have it! Plug a value into c, and it will yield the x value you need, then multiply that x value by c to get the corresponding y value. This forms the solution space of y^x = x^y
@Gaark
@Gaark 6 жыл бұрын
"Don't be too crazy.." *maniacal cackle* oh the numbers I'll produce!!
@stamatiossargantanis7909
@stamatiossargantanis7909 6 жыл бұрын
The most fun part is when you plug in all the complex numbers and see that they all work. I plugged in t = i and not only did it work, but it also generated a real number. Fabulous.
@adriengrenier8902
@adriengrenier8902 6 жыл бұрын
I just let y be dependent on x, so that y = x^p. We get x^(x^p)=(x^p)^x. x^(x^p)=x^(px). x^p=px x^(p-1)=p x=p^(1/(p-1)) Plugging in any value for p we get solutions
@jadegrace1312
@jadegrace1312 6 жыл бұрын
Adrien Grenier you get the same thing
@tuchapoltr
@tuchapoltr 6 жыл бұрын
EDIT: Ohhh, okay I completely misunderstood what you were trying to do.
@SadisticNiles
@SadisticNiles 6 жыл бұрын
He knows that. He is looking for values where exponentiation is commutative, that's why he assumes that x^y = y^x (associativity is something else btw)
@nikogruben9573
@nikogruben9573 6 жыл бұрын
But how is x^(x^p)=x^(px) equal to x^p=px?
@翰-u6z
@翰-u6z Жыл бұрын
@@nikogruben9573 Both side taking logarithm x-based
@alan2here
@alan2here 6 жыл бұрын
Are powers commutative? Lets just try some values :-P 1, 1 --> 1^1 = 1^1 = 1 --> yes 2, 2 --> 2^2 = 2^2 = 4 --> yes 2, 4 --> 2^4 = 2*2*2*2 = 4^2 = 4*4 = 16 --> yes 2, 3 --> near enough maybe something a bit less round sqrt(3), sqrt(27) --> yep Powers are commutative :-P :) Indisputable proof.
@15schaa
@15schaa 6 жыл бұрын
Alan Tennant a simpleton's fallacy.
@splodinatekabloominate846
@splodinatekabloominate846 6 жыл бұрын
"indisputable" lol
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Alan Tennant love it!!!!
@vitakyo982
@vitakyo982 6 жыл бұрын
a^(ln(b))=b^(ln(a)) , this way you can commute ...
@7636kei
@7636kei 6 жыл бұрын
That's just cherrypicking XD
@MagnusSkiptonLLC
@MagnusSkiptonLLC 4 жыл бұрын
"Don't be too crazy" Me: puts t=1 *cackles maniacally*
@daniledenial
@daniledenial 3 жыл бұрын
Actually y^x is always equal to x^y if you can write y^x or x^y as the (b-1)th-root of b ^ b * (b-1)th-root of b. If we say b=3, we have 2nd-root of 3 ^ 3* 2nd-root of 3, which is equal to 2nd-root of 27. And if b=4, we get that the 3rd-root of 4 ^ 4*3rd-root of 4 = 4*3rd-root of 4 ^ 3rd-root of 4
@daniledenial
@daniledenial 3 жыл бұрын
I actually don’t understand how it takes 13 minutes to proof that x^y = y^x if x=squareroot of 3 and y= squareroot of 27
@Amoeby
@Amoeby 3 жыл бұрын
@@daniledenial you just wrote the same thing that in the video. And the goal wasn't to proof x^y = y^x if x = sqrt(3) and y = sqrt(27), but to solve the equation for real x and y with the condition that x is not equal to y.
@daniledenial
@daniledenial 3 жыл бұрын
@@Amoeby Yeah, but there Are More real Solutions
@Amoeby
@Amoeby 3 жыл бұрын
@@daniledenial of course. But that was the example in the video.
@ffggddss
@ffggddss 6 жыл бұрын
This was very high on the "cool thermometer"! In college in the late 1960's, a few of us math majors were investigating solutions to that equation, just out of curiosity. While we concluded that (2,4) and its symmetric partner (4,2) give the only integer solution where x≠y, we never hit on this parametric formula. We did find that if you graph the solution set in the first quadrant, it consists of the line y=x (obviously), along with a curve that loosely resembles the rectangular hyperbola xy = 1, but shifted by (+1,+1); and that the two lines intersect at (e,e) [which is also pretty cool]. Of course, the graph is symmetric about y=x; and as either x or y → ∞, the other → 1⁺. So this means that the curve mentioned above, more closely resembles (x-1)(y-1) = (e-1)² ≈ 3 Fred
@blackpenredpen
@blackpenredpen 6 жыл бұрын
ffggddss thanks Mr. Fred! Part 2 is coming soon : )
@ffggddss
@ffggddss 6 жыл бұрын
You're welcome! I'll be on the lookout for that. It *is* kind of an intriguing topic. And having put it aside so many years ago, I was glad to see your parametric solution which, for one thing, makes it a whole lot easier to plot... Fred
@cr5678
@cr5678 5 жыл бұрын
Just when I thought there was nothing left for Asians to beat me at, this dude starts writing with two pens in one hand.
@alvachan88
@alvachan88 4 жыл бұрын
never knew this was an asian thing. when i was in school holding a pencil and pen in one hand was normal.
@zylnexxd842
@zylnexxd842 4 жыл бұрын
You can't beat us Asians. No one can.
@paolo6219
@paolo6219 3 жыл бұрын
Musicians rule: there is always an asian better, and younger than you. Whether you are asian or not.
@joelcohen8672
@joelcohen8672 5 жыл бұрын
Actually, one of the solutions you find in your first method is the value y itself (in your example x = 3 is a solution), which you excluded. On way to study the number of solutions of this equation is to rewrite it by taking logarithms (you get y ln(x) = x ln(y) ) and rearranging to a more symmetrical : ln(x)/x = ln(y)/y. So you have to study when the function f(t)=ln(t)/t takes the same value twice. Since f is increasing on ]0, e] from -∞ to 1/e and decreasing on [e,+∞[ from 1/e to 0, it can be shown that for any x in ]1,e[, there is exactly one y in ]e,+∞[ such that f(x) = f(y).
@BulaienHate
@BulaienHate 6 жыл бұрын
Best way to impress your girls 13:17
@kyanovp1915
@kyanovp1915 6 жыл бұрын
Bryan Hart an ad?
@baka_geddy
@baka_geddy 5 жыл бұрын
I don't get it
@pigeonlove
@pigeonlove 5 жыл бұрын
Best would be to clear your acne...
@shelleyroy4065
@shelleyroy4065 5 жыл бұрын
looks fucky and here's sexy
@JimmyXOR
@JimmyXOR 6 жыл бұрын
The equation e^x=x^e only have the solution x=e. That's the only positive number with this property.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Yes! : )
@JimmyXOR
@JimmyXOR 6 жыл бұрын
personsname0 The equation 71^x=x^71 also has a solution x=1.06609898594648539. My equation doesn't have another solution..
@personsname0686
@personsname0686 6 жыл бұрын
thought you were talking bout integer solutions, serves me right for being a smarmy
@JimmyXOR
@JimmyXOR 6 жыл бұрын
personsname0 of course I talked about the integer e ;)
@personsname0686
@personsname0686 6 жыл бұрын
lol... oh man, think i might be actually losing my mind
@rodolforiverol
@rodolforiverol 5 жыл бұрын
If you introduce y = x^t instead of y = tx @13:58 you will get to the same place just as fast but maybe just a bit easier. Good videos, very enjoyable.
@shilinyou6632
@shilinyou6632 6 жыл бұрын
In another video u said never trust Wolframalpha
@harrisons62
@harrisons62 5 жыл бұрын
7:55 That’s what my old maths teacher in high school used to say, when we would suggest a harder way to solve a problem.
@blomblorpf
@blomblorpf 6 жыл бұрын
To me, a highschool student who has only done a watered-down version of Calc 1 in a course, because my country doesn't care about Math, I saw this problem as impossible from the title. But as you started with the second solution, I realized how elegant and connected Math can be sometimes. It just shows how well you can actually communicate your thoughts and explain them well. I'm more of a physics guy, but a deep connection to Math is quite important to me, not just getting something right. You've helped me through that. Thank you for your efforts, and hopefully, with enough practice as it is, I'll be able to view seemingly impossible problems the same way you do! Totally possible!
@diptoneelde836
@diptoneelde836 5 жыл бұрын
Where do you live?
@pigeonlove
@pigeonlove 5 жыл бұрын
@@diptoneelde836 he lives his own Dreamland where he thinks his own short comings are his country's mistakes. He needs psychology not maths.
@wadda4039
@wadda4039 5 жыл бұрын
@@pigeonlove you have serious problems
@TheTacticalMess
@TheTacticalMess 5 жыл бұрын
plo Judging by the fact you went out of your way to be a douchebag, I think you need psychology.
@tannernatebryce6259
@tannernatebryce6259 Жыл бұрын
Nah nah, I agree, absolutely zero countries can function without maths, maths is a quintessential subject in every country for basic functionality over stock exchanges to expeditions, no country doesn't value maths, either the original post is lying and he is just bad and not passionate about maths, or he lives in the tribelands of somalia
@mattkilgore7323
@mattkilgore7323 6 жыл бұрын
What a great introduction to solving equations with parametrics!
@olbluelips
@olbluelips 6 жыл бұрын
x^y=y^x is one of my favourite equations
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Yay!!
@jackren295
@jackren295 6 жыл бұрын
I actually thought about this problem once, and I was considering natural number solutions for x and y, and I got stuck. After you showed the function x=t^(1/t-1), I graphed it and found that it asymptotes to x=1 as t->+infinity [(+infinity)^0=1 perhaps?], and to t=0 as t->0+. The graph only crosses one lattice point at (2, 2). x is already smaller than 2 for t>2, so no more whole number solutions can exist for t>2. And t=1 is undefined, the limit approaches e=2.718... as t->1 t^(1/t-1) = n->0 (1+n)^1/n = k->+infinity (1+1/k)^k. Therefor, 2^4=4^2 is the only natural number solutions for x^y=y^x.
@t_kon
@t_kon 6 жыл бұрын
Jack Ren 2 is the only integer solution as t-1 | t can only happen if and only if t = 2
@jackren295
@jackren295 6 жыл бұрын
For x=t^(1/t-1), t=2 gives the only whole number solution of x=2^[1/(2-1)]=2^1=2. For y=t^(t/t-1), t=2 gives the only whole number solution of y=2^[2/(2-1)]=2^2=4. 2^4=4^2 is the only equation with whole numbers in the form of x^y=y^x, x≠y.
@jelle717
@jelle717 5 жыл бұрын
The equastion x^y=y^x on his own is pretty easy. The answer is x=y. But with the data he gave it is a realy hard equastion.
@L1N3R1D3R
@L1N3R1D3R 6 жыл бұрын
9:26 At this point, you divide by t before plugging in x, but then you multiply by t before solving for y. Can't you just plug in x directly and skip a couple steps here?
@blackpenredpen
@blackpenredpen 6 жыл бұрын
L1N3R1D3R Ahhhhhhhh loll!!! I didn't see that
@cermatedukajogja1095
@cermatedukajogja1095 6 жыл бұрын
Hahahaaa
@chessandmathguy
@chessandmathguy 6 жыл бұрын
Haha yep!!
@ghazouaninagui8567
@ghazouaninagui8567 5 жыл бұрын
Noticed that as well lmaoo
@charbelnakad7668
@charbelnakad7668 5 жыл бұрын
0:54 *P O W E R*
@MinecraftRosarino
@MinecraftRosarino 6 жыл бұрын
Really interesting. I really like the explanation. Though, when you raise [x^(tx)]^(1/x) x≠0! A big shout out from Argentina!
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Bautista Bauto98 thanks!!!!
@Agreedtodisagree
@Agreedtodisagree 5 жыл бұрын
me: oddly satisfying video others: nerd
@fyukfy2366
@fyukfy2366 5 жыл бұрын
r/iamverysmart
@tweedyburd007
@tweedyburd007 5 жыл бұрын
@@fyukfy2366 who else watches this besides nerds though?
@ignaciodemiguel3683
@ignaciodemiguel3683 5 жыл бұрын
@@fyukfy2366 totally what I was thinking
@marusdod3685
@marusdod3685 5 жыл бұрын
​@@tweedyburd007 this is not middle school anymore
@anmoljhamb8775
@anmoljhamb8775 5 жыл бұрын
@@tweedyburd007 true..
@michaelwinter742
@michaelwinter742 6 жыл бұрын
13:04 Sets t = i ; sees into the future.
@Oribi5
@Oribi5 4 жыл бұрын
This guys enthusiasm as he takes us through his story brings unexpected amounts of joy into my life
@NasirKhan-lq5jl
@NasirKhan-lq5jl 6 жыл бұрын
Thumbs up. That y=tx relation was excellent
@aztroxer0logy
@aztroxer0logy 5 ай бұрын
4:03 That AaaaHaaa caught me off-guard ngl
@humzam9422
@humzam9422 6 жыл бұрын
1:09 the color of the markers on his shirt are the same of the colors of marker he uses.
@bouteilledargile
@bouteilledargile 6 жыл бұрын
Great video! This is one of my favorite equations of all time. Try to prove that 2^4 = 4^2 is the only Integer solution in the next video. It's a fun proof
@MrBoubource
@MrBoubource 6 жыл бұрын
Even tho it's fun it has absolutely no meaning from what i can tell... no real problem would lead to this equation, i guess?
@blu5037
@blu5037 6 жыл бұрын
y = x^x or x = y^y It will work
@theoajuyah9584
@theoajuyah9584 6 жыл бұрын
Please write it, it seems interesting - one of those thing's u have a hunch of but just find difficult to prove. He accidentally made a mistake in saying 3 & 27 work. Thx in advance
@theoajuyah9584
@theoajuyah9584 6 жыл бұрын
Actually no. It might seem like it, but actually see it to completion. Example case (3,3³=27): 3²⁷(3 multiplied 27 times) is NOT equal to 27³(three 3s multiplied 3 times, hence 3 multiplied 9 times) It all comes down to the solutions of that xᵗ = tx, which I believe to have only (x=2, t=2) as the only integer solutions, related to 2² = 2(2). 35cut may know how to prove it
@blu5037
@blu5037 6 жыл бұрын
Theo Ajuyah oh my bad thx for correcting me
@alexdagios28
@alexdagios28 6 жыл бұрын
as always, a very satisfying answer
@blackpenredpen
@blackpenredpen 6 жыл бұрын
: )
@erickmerinoyanez9185
@erickmerinoyanez9185 5 жыл бұрын
Haces la matemática más fácil y entretenida... Más entretenida de lo que de por sí, ya es. Muchas gracias!
@ecekucuk3868
@ecekucuk3868 6 жыл бұрын
That impressed me a lot! Seeing such equations solved makes me feel kind of satisfied...
@Booperdoopman
@Booperdoopman 3 жыл бұрын
I thought about it, when t < 0, it does not work, x^y will be negative and y^x will be positive, but they have the same decimals. You just add |these| and its okay tho, its a piece of art!
@nohackers2037
@nohackers2037 4 жыл бұрын
8:58 I like that trick. Idk why I haven't thought about it. I might use it on a logarithim question
@Inspirator_AG112
@Inspirator_AG112 2 жыл бұрын
f(x, y) = f(y, x) on Desmos usually gives an identity line.
6 жыл бұрын
Hi. Thanks for your math videos! I have a question: around 7:25 you make a simplification which basically is: if a^b = c^b, then a = c. But if b is even, a = -c is also a solution, and this simplification may make you lose solutions. So the proof would have to be completed with the possibility that a = -c and b = 2k, with k an integer, right?
@Pklrs
@Pklrs 5 жыл бұрын
Assuming that x,y are positive we can write lnx/x = lny/y or f(x)=f(y) (1) , where f(x)=lnx/x. Through the graph we can see that (1) has infinite solutions (x,y) if x belongs to (1,e) and y belongs to (e, inf.) and vice versa.
@orestismper7304
@orestismper7304 5 жыл бұрын
How you can divide by x when the x belongs to the |R?
@erynn9770
@erynn9770 4 жыл бұрын
Well, there obviously are no (sane?) solutions for x=0 anyway, so...
@apenasmeucanal5984
@apenasmeucanal5984 6 жыл бұрын
The solution to this problem for natural numbers goes like this x | y: 1^(1^1) 2^(2^2) 3^(3^3) 4^(4^4) 5^(5^5) What a lovely pattern.
@codegurt5165
@codegurt5165 6 жыл бұрын
setting y = tx to x = y/t was redundant lol
@KnakuanaRka
@KnakuanaRka 6 жыл бұрын
AniPrograms Yeah, That part was totally unneeded. Still a great video.
@orcishh
@orcishh 6 жыл бұрын
You have an anime profile picture
@ilprincipe8094
@ilprincipe8094 5 жыл бұрын
@@orcishh setting y = tx to x = y/t was redundant lol Now its a valid comment thank me later
@orcishh
@orcishh 5 жыл бұрын
@@ilprincipe8094 but this kid has an anime profile picture
@ilprincipe8094
@ilprincipe8094 5 жыл бұрын
@@orcishh goddamnit you are right
@houseflyer4014
@houseflyer4014 4 жыл бұрын
btw if you do this with natural logs: x^t-1 = t take ln of both sides ln(x^t-1) = ln(t) put power to the front t-1ln(x) = ln(t) divide both sides by t-1 ln(x) = ln(t)/t-1 put e as a base to both sides e^(ln(x)) = e^(ln(t)/t-1) cancel out e and ln x = 1/t-1
@camerongray7767
@camerongray7767 6 жыл бұрын
I feel so smart that I understood what you did in this video
@blackpenredpen
@blackpenredpen 6 жыл бұрын
: )
@snejpu2508
@snejpu2508 6 жыл бұрын
You can also write x as a^b and, then you have x^y = (a^b)^y = a^(by) and it's your another form of this, e.g. sqrt(27)^sqrt(3) = (sqrt(3)^3)^sqrt(3) = sqrt(3)^3sqrt(3) = sqrt(3)^sqrt(27).
@piyalikarmakar5099
@piyalikarmakar5099 6 жыл бұрын
i have a question sir...in this case we assumed Y=tX, so there can be more linear equation to be assumed, and that's how we can get different expressions for the variables.don't we?
@davidseed2939
@davidseed2939 6 жыл бұрын
You could save a step or two in the third column by starting at y= xt. Also this parametric form shows that the only integer solution occurs at x=t=2 , y=4. Also note that replacing t with 1/t swaps x and y. So all solutions can be found choosing t>1 ie y>x . Further insights may be obtained by considering the graph of ln(t) against lnx and lny
@andrewcook1428
@andrewcook1428 6 жыл бұрын
Really cool vid this makes more excited to learn calculus although most of the questions probably will be mostly the daily grind type unlike this one
@alfiechenery4146
@alfiechenery4146 5 жыл бұрын
What’s cool is if you plot x^y=y^x you get what looks like two graphs super imposed on top of each other. You get the line y=x for obvious reasons, but you also get this asymptote like bit. But from that you can show that 2 and 4 are the only integer solutions (I’m only considering real numbers, not sure if you could have some complex number solutions with integer real and imaginary parts)
@charlesokoh3373
@charlesokoh3373 6 жыл бұрын
👏 this is so good; so good #U deserve an applause
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Charles David thank you!!!!
@sherkoza
@sherkoza 4 жыл бұрын
11:53 using a number “b” for t OR the reciprocal of that same number (1/b) will generate the same x and y values. take t=2 for example it will generate x=2 and y=4, now use the reciprocal t=1/2 and you will have x=4 and y=2 y=x^t and x=y^-t
@phscience797
@phscience797 6 жыл бұрын
There is also an explicit formula whit which you can find the y for a given x: If y^x = x^y, then y = -x*W(ln(x)/x)/ln(x). This can easily be verified by trying to transform the right expression into the left one.
@Jonas-wd8pl
@Jonas-wd8pl 6 жыл бұрын
PHScience What is W in your equation?
@ldx748
@ldx748 6 жыл бұрын
Jonas the lambert W function
@Jonas-wd8pl
@Jonas-wd8pl 6 жыл бұрын
I was thinking of the same. But I thought it wouldn't make sense in this context. thank you
@badlydrawnturtle8484
@badlydrawnturtle8484 6 жыл бұрын
Never logarithm when you can find another way.
@nucle4rpenguins534
@nucle4rpenguins534 6 жыл бұрын
What's the W function
@dustinbachstein3729
@dustinbachstein3729 3 жыл бұрын
Using our beloved W function, we can solve for x with given y>0: x=e^(-W(-ln(y)/y)) Note that -ln(y)/y is between -1/e and 0, which means the W "function" has actually two different values, one of which gives us the boring x=y result.
@SeriousApache
@SeriousApache 6 жыл бұрын
4:09 - i prefer to use ; instead of , between x and y value. For a moment i though that 2nd answer is x= 3.27 and not x=3 y=27
@pursuitsoflife.6119
@pursuitsoflife.6119 6 жыл бұрын
Unlike Europe, Asia and Americas generally use "." For decimal points, like 3"."27 and rarely use "," (except for grouping large numbers like 2,000,000) so yeah it's a bit different
@gepard1983
@gepard1983 5 жыл бұрын
its just that x=3 and y=27 dosnt work at all or i dont get it... 19683 =/= 7625597484987 witch whould be the results for x to the power of y and y to the power of x in this case
@willk7184
@willk7184 5 жыл бұрын
@@gepard1983 I was confused too, but I figured it out. Those points are the two solutions where x^3=3^x. The 3,27 point is the trivial one, where 3^3 = 3^3=27. The other one is where 2.4781^3 = 3^2.4781 = 15.2171.
@idavid8128
@idavid8128 6 жыл бұрын
I have a story with this problem. I had a crush on a girl I've met days ago and I discovered that she had a boyfriend which got me very sad. To distract myself I started thinking about the powers of two and noticed that 2^4 was equal to 4^2 and I was shocked. Decided to try to solve it. Spent two months trying to solve it. Completely forgot about the girl. Since then I have a new crush : solving math problems. Thank you for being an inspiration to me and helping me pursuit my dreams related to math. I'm in high school but I already know calculus because I loved watching your series "math for fun". Love from Brazil
@link_z
@link_z 6 жыл бұрын
I liked this one a lot!
@Deathranger999
@Deathranger999 6 жыл бұрын
Carefully picked rational values lead to nice solutions. Say, anything of the form t = (a + 1) / a. Take a = 3. Then we have x = t^(1/(t - 1)) = ((a + 1) / a)^(1/(1/a)) = (a + 1)^a / a^a, and similarly y = (a + 1)^(a + 1) / a^(a + 1). So they look kind of messy, but plugging in numbers makes them much simpler. (2, 4), (9/4, 27/8), (64/27, 256/81), and so on. You could play around with other parametrized rational solutions that happen to work well and see what you get.
@krukowstudios3686
@krukowstudios3686 5 жыл бұрын
9:27 You divide by t and then multiply by t one step later ;) y was already isolated :) Still, cool video!
@paull2937
@paull2937 2 жыл бұрын
When I clicked on the video, it had 999,979 views lol. Here before 1 million views.
@john-athancrow4169
@john-athancrow4169 6 жыл бұрын
The 1's cancel out each other. -1+1=0
@itismemd
@itismemd 5 жыл бұрын
If you take any number for y, you can always take x=y^y! because you will have y^y^y on bouth sides... like 3 and 27 as shown in the graf-solution, you can do it with 5 and 3125 or any number
@Superman37891
@Superman37891 5 жыл бұрын
Great solution! (Should I do this? Eh, it’s a rare opportunity. No offense though, you’re still WAY smarter than me. See below for his mistake) At 9:30 just multiply tx through; that’s exactly what you did after wasting 30 seconds and adding unnecessary confusion.
@blackpenredpen
@blackpenredpen 5 жыл бұрын
To be honest, I am not that smart.
@cooldawg2009
@cooldawg2009 11 ай бұрын
You already had an equation for Y with Y isolated. Why bother dividing Y by T if you were just going to multiply T to both sides anyways? Aside from that, thanks for the video. I tried to do the ln and got stuck. I thought I could do lambert W function but couldnt find a way to get it into the form once I had x^(1/x) = (#)^(1/#)
@DavideZamblera
@DavideZamblera 6 жыл бұрын
"You can use whatever t you want" mmmh let's take t=1
@disc_00
@disc_00 5 жыл бұрын
Did you forget that y ≠ x?
@tylerchristensen7480
@tylerchristensen7480 4 жыл бұрын
Максим Быков yeah you’re right. If t=1 then y would equal x which isn’t allowed
@mohammadfahrurrozy8082
@mohammadfahrurrozy8082 4 жыл бұрын
@@disc_00 check it out again If t=1 ,then it would be a 1/0 as x's exponent Think first,comment after
@mohammadfahrurrozy8082
@mohammadfahrurrozy8082 4 жыл бұрын
@@tylerchristensen7480 @Максим Быков check it out again If t=1 ,then it would be a 1/0 as x's exponent Think first,comment after
@henrikljungstrand2036
@henrikljungstrand2036 4 жыл бұрын
@@mohammadfahrurrozy8082 Yes by the limit as t tends to 1 is still defined, this gives x = y = e.
@creepermat
@creepermat 4 жыл бұрын
Special and unique cases: 2^4 = 4^2 2^3 +1 = 3^2
@dutchkaluuk4580
@dutchkaluuk4580 6 жыл бұрын
Your accent has improved a lot . Keep up the good work.
@venkatbabu186
@venkatbabu186 5 жыл бұрын
Increasing exponent equals decreasing exponent real value 3. Three tangents to a curve meeting point.
@tokajileo5928
@tokajileo5928 6 жыл бұрын
what about x^n+y^n = x^y for what x,y,n is it true for positive integers? what about negative ones? btw: can you use a head microphone so you do not have to hold 2 pencils in one of your hands?
@Jordan-zk2wd
@Jordan-zk2wd 6 жыл бұрын
If you set x1. Setting t>1, you can prove there are no integer solutions by showing t^(1/(t-1)) only has an integer solution for t=2, which is EZPZ. Pretty cool : D
@nassershehadeh4661
@nassershehadeh4661 5 жыл бұрын
I usually watch some videos of yours, but this one seriously made me think "holy shit this is genius" lol
@blackpenredpen
@blackpenredpen 5 жыл бұрын
: )))))
@莊園長-l7y
@莊園長-l7y 4 жыл бұрын
7:26 This is a big mistake. Not only you assumed x isn't 0; but there's also many exceptions , such like (x^2)^(1/2)=((-x)^2)^(1/2). By your simplification, x=-x. See where you are wrong?
@dex_3k
@dex_3k 5 жыл бұрын
I've recently had to solve sin(x)^cos(x)=cos(x)^sin(x) on my math exam 😀
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Hmmm, x = pi/4 +2npi?
@dex_3k
@dex_3k 5 жыл бұрын
@@blackpenredpen yep :D
@mrfreezy7457
@mrfreezy7457 5 жыл бұрын
Your second solution is nice for proving that 1^infinity is indeterminant. As t gets very large (approaches infinity), 1/(t-1) will approach 0 => x will approach 1, and t/(t-1) will will approach 1, which means y will approach infinity. You'll get a conclusion that 1^infinity = infinity, which is an alternative to the intuitive solution that 1^a = 1 for all a.
@Jax-ke6jf
@Jax-ke6jf 4 жыл бұрын
Me in precalc cp just learning about trig functions binging your videos: Wow, I wish I knew what was going on.
@pratikmaity4315
@pratikmaity4315 4 жыл бұрын
You can try to find integral solutions to the equation with some different approach
@roquedefrutos8667
@roquedefrutos8667 5 жыл бұрын
9:53 Why do you divide by t and then, after substituding, multiply both sides by t??😂😂
@saadsayed1620
@saadsayed1620 4 жыл бұрын
this is my favorite channel. I already loved math but on this channel, I learn things I love.
@EssentialsOfMath
@EssentialsOfMath 6 жыл бұрын
I don't know if you have done a video on this, but you should do a proof that sinh(x) and sinh inverse only intersect at the origin (without graphing tools). It was a problem from my calculus 3 class and I was the only one who got it :P
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Essentials Of Math no. I don't have it yet. And I think I will need to think hard on that.
@EssentialsOfMath
@EssentialsOfMath 6 жыл бұрын
blackpenredpen thinking hard is the best! I'll look forward to it!
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Essentials Of Math I think I will consider f(x)=sinh(x)-arsinh(x) then use IVT for showing a root then use derivative for showing it's always increasing.
@EssentialsOfMath
@EssentialsOfMath 6 жыл бұрын
blackpenredpen you're on the right track, but there is a much simpler function you can use! :)
@trueriver1950
@trueriver1950 6 жыл бұрын
blackpenredpen Think about the derivative of the separate functions sinh and arsinh
@flightforlife6553
@flightforlife6553 3 жыл бұрын
Everyone needs to learn this formula. Its great
@priyanksisodia5889
@priyanksisodia5889 6 жыл бұрын
I hve learn new thing today, thanks
@tclf90
@tclf90 5 жыл бұрын
you don't need to know 2^4 = 4^2 Just take log on both sides, and re-arrange a bit, you will get x/log(x) = y/log(y) Notice that LHS and RHS are symmetric. So you only need to consider one side. Notice that again, on either side, it is a ratio. That means you can multiply any non-zero constant to both numerator and denominator, and still, the number is unchanged. Say, for a non-zero constant k, you have x/log(x) = (k*x) / (k * log(x)) = kx / log(x^k) which means for any x and constant k, if you can have kx = x^k, then {x, y=kx} will be one of the solution.
@ariusmaximilian8291
@ariusmaximilian8291 6 жыл бұрын
SOOOOOOOOOO COOOOOOOOOOOOOL YEEEEEY! Thanks for being awesome with math
@collin9143
@collin9143 6 жыл бұрын
Another amazing thing is that if you graph out y^x = x^y with a graphing software, 2.718 appears :0
@viktormikhaltsevich7400
@viktormikhaltsevich7400 5 жыл бұрын
if you solve this problem without parametrics, but instead through a first derivative function you get : dylny=dx, and as you know value for e is 2.71. I just came across this problem, and in another method, I am encountering a contraction to this solution -- y= x^(t/t-1), therefore x-->t and assumption y=tx may not be correct. (Honestly, makes a whole lot of sense given that rate of change is not linear)
@me_lolo
@me_lolo 6 жыл бұрын
is this considered pre-calculus? how important would parametrics be going into calc 2?
@blackpenredpen
@blackpenredpen 6 жыл бұрын
I think it's do-able in precalc. Parametric equations are useful in calc2, 3, and more : )
@me_lolo
@me_lolo 6 жыл бұрын
thanks! and are you at UCB? do you teach there? would be fun to have you
@volodymyrgandzhuk361
@volodymyrgandzhuk361 4 жыл бұрын
What's interesting is that if x^y=y^x, then x and y are proportional to their logarithms. In fact, we have x^y=y^x y ln x=x ln y (y ln x)/(ln x ln y)=(x ln y)/(ln x ln y) x/ln x=y/ln y
@ForestGramps
@ForestGramps 5 жыл бұрын
Why not take the natural log of both sides and solve implicitly?
@imagineexistance4538
@imagineexistance4538 5 жыл бұрын
Micah Beiser it wont do anything Take the natural log of one side over the natural log of x or y and solve from log(x^y)/log(y)=x
@σαπφω-φ6ο
@σαπφω-φ6ο 4 жыл бұрын
I was obsessed with this question when I was in high school. Worked out the parametric equation for it. Funny to see someone made a youtube video about it.
@nafay
@nafay 6 жыл бұрын
This guy is a sorcerer! A sorcerer I tell you!
@RiboTheGreat
@RiboTheGreat 2 жыл бұрын
x^y=y^x Let y=3 So x³=3^x Applying cuberoots on both sides we get x=cuberoot(3^x) On the RHS, substitute the value of x so we get x=cuberoot(3^(cuberoot(3^x))) Doing it again and again will give us an infinite series and therefore the answer x=cuberoot(3^cuberoot(3^cuberoot(3..... and y=3 My method of solving it
@stevechen9761
@stevechen9761 5 жыл бұрын
Bro’ don’t forgot X & t are different to 0 (cause you divide by X & t)
@urieldaboamorte
@urieldaboamorte 5 жыл бұрын
this is obvious in case of x because if we allow it to be 0, then 0^y = y^0 => 0 = 1, a contradiction
@JanPBtest
@JanPBtest 4 жыл бұрын
If you substitute t = 1 + 1/u then you get x = (1 + 1/u)^u and y = (1 + 1/u)^(u+1) which perhaps looks more familiar.
@xaxuser5033
@xaxuser5033 6 жыл бұрын
Yes we want a video about pytagorian triples #yay
@RutvikPhatak
@RutvikPhatak 6 жыл бұрын
Yahya Hamid I second this
@tamircohen1512
@tamircohen1512 6 жыл бұрын
Yep
@ΝικοςΜανε
@ΝικοςΜανε 6 жыл бұрын
XaXuser it is easy man Let k and n be any positive integer A = k^2 + n^2 B = 2kn C = k^2 - n^2
@xamzx9281
@xamzx9281 6 жыл бұрын
XaXuser what to proof here
@xaxuser5033
@xaxuser5033 6 жыл бұрын
Νικος Μανε what !? If we work in the set of positifs integers the your A will be greater than your C while the C is the hypotenuse?
@adamhrankowski1298
@adamhrankowski1298 6 жыл бұрын
Very clear. Thanks. Three questions: 1. How do we know x & y are linearly related? Do we just try y=tx and see if we can generate parametric equations with the desired property? 2. Is there a way we can test to see if there are other integer solutions for x & y? 3. When are you going to do the Pythagorean triple generator?😀
@rot6015
@rot6015 6 жыл бұрын
BLACKPENREDPEN #YAY WE LOVE YOU
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Thank you!!!
@angelmendez-rivera351
@angelmendez-rivera351 4 жыл бұрын
There is also a non-parametric solution to this equation. If you want y as a function of x, then x^y = y^x implies y·ln(x) = x·ln(y), which implies ln(x)/x = ln(y)/y. Multiply by -1 to get -ln(x)/x = -ln(y)/y, and this is the form we want the equation in to solve for y. -ln(y) = ln(1/y), hence -ln(y)/y = ln(1/y)/y = (1/y)·ln(1/y), and 1/y = e^ln(1/y), hence (1/y)·ln(1/y) = ln(1/y)·e^ln(1/y). Therefore, we can say ln(1/x)·e^ln(1/x) = ln(1/y)·e^ln(1/y). Now, use the Lambert W function, on both sides of the equation. Then W[ln(1/x)·e^ln(1/x)] = ln(1/y). Keep in mind that W[ln(1/x)·e^ln(1/x)] = ln(1/x) when you take the principal branch, but alternative branches give other solutions, hence why we keep in that open form. That is the key to acknowkedging the fact that solutions other than x = y also exist. y = e^(-W[ln(1/x)·e^ln(1/x)]).
@15schaa
@15schaa 6 жыл бұрын
Don't worry, be commutative! #yay
@anaveragepie6860
@anaveragepie6860 3 жыл бұрын
About 4:10 wouldn’t there only be one solution because X can’t equal Y? And in the context of the equation you’re saying that when X = 3, and X^3 = 3^X, when you plug in X it would be 3^3 = 3^3 . I could be wrong tho but I just wanted to point that out…
@Sid-ix5qr
@Sid-ix5qr 6 жыл бұрын
If you wanna respect Math, respect this man first. #YAY
@DaanSnqn
@DaanSnqn 4 жыл бұрын
If you say (3sqrt(3))^sqrt(3) = sqrt(3)^(3sqrt(3)), you can say the same thing, where you only use the number 3 for t=3.
Graph of x^y=y^x
19:44
blackpenredpen
Рет қаралды 93 М.
Solving sin(x)^sin(x)=2
10:46
blackpenredpen
Рет қаралды 408 М.
Don't underestimate anyone
00:47
奇軒Tricking
Рет қаралды 22 МЛН
Noodles Eating Challenge, So Magical! So Much Fun#Funnyfamily #Partygames #Funny
00:33
5 Levels Of “No Answer" (when should we use what?)
24:50
blackpenredpen
Рет қаралды 423 М.
Newton's method and Omega Constant
21:58
blackpenredpen
Рет қаралды 255 М.
if x+y=8, find the max of x^y (Lambert W function)
12:59
blackpenredpen
Рет қаралды 754 М.
so you want a VERY HARD math question?!
13:51
blackpenredpen
Рет қаралды 1 МЛН
How to Take the Factorial of Any Number
26:31
Lines That Connect
Рет қаралды 1,2 МЛН
Precalculus teacher vs WolframAlpha student
11:27
blackpenredpen
Рет қаралды 626 М.
Integrate x^-x dx
20:37
Prime Newtons
Рет қаралды 124 М.
a^x + x = b ( a general formula)
15:22
Prime Newtons
Рет қаралды 34 М.
If x^y=y^x, then dy/dx=?
7:40
bprp calculus basics
Рет қаралды 10 М.
Don't underestimate anyone
00:47
奇軒Tricking
Рет қаралды 22 МЛН