Proving the power, product and quotient rules by using logarithmic differentiation & the chain rule

  Рет қаралды 80,089

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 200
@trucid2
@trucid2 7 жыл бұрын
Implicit differentiation is like a magic trick. It feels like we haven't done any real work and still got the answer.
@Metalhammer1993
@Metalhammer1993 7 жыл бұрын
well implicit differentiation just feels like a half assed chain rule to me. half assed because we don´t do half the work right away^^ (other than that it is a chain rule we could solve for y in a sepperate line and take the derivative but that would defeat the purpose of implicit differentiation. you only do half the work because you hope you can save quite a chunk of the work you just have ahead of you. like: figuring out the "inner function" algebraically)
@imperson1785
@imperson1785 3 жыл бұрын
@@Metalhammer1993 it's also half assed because the domain can only be _half_ of all real numbers, i.e. x>0, since that's the domain for ln(x)
@williamestey7294
@williamestey7294 3 жыл бұрын
Yes, all of these proofs only verify for positive real values of x. Proof of all real values requires more work.
@trucid2
@trucid2 3 жыл бұрын
@@williamestey7294 Probably works on negative numbers too if you allow the result to be complex valued.
@williamestey7294
@williamestey7294 3 жыл бұрын
Yes, that is correct. When using the generalized logarithm function defined for complex numbers, this proof can be shown to work over the entire complex plane.
@__nog642
@__nog642 7 жыл бұрын
Damn, that power rule proof was way easier than the proof with the binomial theorem and the definition of the derivative.
@willsunnn
@willsunnn 6 жыл бұрын
Neil Gupta , and that proof that uses the binomial theorem only proves it is true for positive integers
@KnakuanaRka
@KnakuanaRka 6 жыл бұрын
Meh; I still find the old binomial version more memorable. Maybe it’s to do with it not requiring anything other than the basic definition of a derivative; no trickery or complications needed, just straightforward variable-juggling. And you really only need the first two terms of the expansion, since when you expand (x+h)^n, you can factor h^2 out of all the other terms, meaning they still have a factor of h after diving by h, so you know they all will go to 0 with the limit and can toss them out without having to write all of them; it’s not as messy or scary as it may seem at first blush. But perhaps it’s mostly because of a really cool geometric intuition shown by 3blue1brown in his Essence of Calculus series: kzbin.info/www/bejne/iWHCootqi6-bg7M That analogy seems to make it easy for me to get a grasp on the binomial version, while this one doesn’t have such an easy representation. Heck, he offers a lot of geometric representations of other derivative properties which are way more intuitive and easy to understand than any way of juggling variables. Then again, the binomial version only works for counting numbers, so I suppose we need this one anyways.
@yoavmor9002
@yoavmor9002 5 жыл бұрын
@@willsunnn Well, this method only proves this within a function's positive domain. So theoretically, it shouldn't have to work with stuff like -x²-1 at all. You would need to add a limit as c approaches infinity of y+c to the left side to be able to use these formulas for every function, but that ruins the log properties
@blockthrower3947
@blockthrower3947 4 жыл бұрын
I don't know if this is necessarily easier as you use one rule to prove the other rule rather than the binomial proof not relying on a more advanced derivative rule. And you usually learn the derivative of ln(f(x)) way after you learn the power rule.
@anshumanagrawal346
@anshumanagrawal346 3 жыл бұрын
@@yoavmor9002 This was my first thought, seeing this proof
@harleyspeedthrust4013
@harleyspeedthrust4013 3 жыл бұрын
i dont think i've used the quotient rule since high school calculus because it's usually easier to use the product rule with the denominator raised to the -1 power. this was a cool video though, i loved these derivations
@Ayush-yj5qv
@Ayush-yj5qv 3 жыл бұрын
Same bro
@deniseeleam2320
@deniseeleam2320 2 жыл бұрын
I am disappointed I’ve never thought of this but thanks for the tip
@fahrenheit2101
@fahrenheit2101 2 жыл бұрын
I always used this to prove the quotient rule, but I never considered using it as an actual method
@harleyspeedthrust4013
@harleyspeedthrust4013 2 жыл бұрын
@@fahrenheit2101 it works well. One less rule to remember and potentially mess up
@ThePeterDislikeShow
@ThePeterDislikeShow Жыл бұрын
I discovered that trick quite by mistake in high school because I thought that it was weird there are two different ways to look at a quotient and wanted to be sure they gave the same answer!
@ozzyfromspace
@ozzyfromspace 5 жыл бұрын
My calc professor was Chinese and when teaching the quotient rule, she would always say, "low-d-high, high-d-low" with a Cantonese accent. I never forgot, she was an awesome instructor!
@tcmxiyw
@tcmxiyw 2 жыл бұрын
One of my students remembered the quotient rule as “down d-up - up d-down all over down squared”
@brucefrizzell4221
@brucefrizzell4221 6 жыл бұрын
proofs using ln() are very helpful. a lot easier to understand than the normal limit proofs. perhaps Blackpenredpen will explain Taylor polynomials.
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
Also, with regards to the power-to-the-power rule, if you distribute, you will find that dy/dx = g*f^(g - 1)*f’ + ln f*f^g*g’. This is interesting because it is the sum of the ordinary power rule as applied to y if g is treated as constant and of the exponential rule as applied if f is treated as a constant.
@cpotisch
@cpotisch 4 жыл бұрын
It’s amazing that with just the chain rule and the derivatives of ln and of sin, one can differentiate almost every single function.
@kyloben4848
@kyloben4848 2 жыл бұрын
You only need e to the x to find the derivative of ln
@DaanSnqn
@DaanSnqn 7 жыл бұрын
Fancy jacket 👌👌
@blackpenredpen
@blackpenredpen 7 жыл бұрын
1234Daan4321 thank you!!
@bmw123ck
@bmw123ck 7 жыл бұрын
Could you prove the same but using the definition of derivative? Love your vids!!
@blackpenredpen
@blackpenredpen 7 жыл бұрын
bmw123ck yes. But just longer.
@bmw123ck
@bmw123ck 7 жыл бұрын
Yeees, but not so obvious and systematic as it is using logarithmic differentiation
@pacolibre5411
@pacolibre5411 3 жыл бұрын
Just realized something. The derivative of f^g is the sum of the derivative assuming g is constant (g*f^(g-1)*f’) and the derivative assuming f is a constant (f^g*ln(f)*g’)
@jesusandrade1378
@jesusandrade1378 2 жыл бұрын
That is the verbal way of remembering the derivative of a function raised to another function, as shown in calculus books.
@ozzyfromspace
@ozzyfromspace 5 жыл бұрын
Proof by logs is so easy it shouldn't be allowed lol.... technically these proofs constrain the functions (monotonically increasing, nonzero, etc) because logs blow up if you're not careful. Logs are great for sketching a proof before doing the heavy lifting. Fabulous video!
@mrteddy808
@mrteddy808 7 жыл бұрын
Beautiful. Always wanted to know the proof, shame they don't show it in math B.
@blackpenredpen
@blackpenredpen 7 жыл бұрын
Teddy S what math B?
@timkw
@timkw 2 жыл бұрын
@@blackpenredpen I dont know if this person is Dutch, but in the Netherlands we have different math classes: A,B,C,D. A&C are focussed on Statistics and Probability, with algebra and simple differentiation. B is focussed on Calculus, Trigonometry and Geometry. D goes further than A,B and C with complex numbers, group theory and matrices and some other stuff.
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
For those concerned with the commentary that this only works if x^r is positive, or if f*g or f/g or f^g is positive. This is not true. There is no restriction on what f, g, and x^r can be valued as long as the input x is real-valued. The reason is that the natural logarithm function as well as the exponential function are both well-defined if their domains are the set of complex numbers. Complex-valued functions are allowed inside the limit definition of derivatives, because the limiting variable and the inputs of those functions in the limits are real-valued, which is what is required. So f, g, and x^r can be complex-valued, with r being complex-valued, as long as x is real-valued. Hence there is no fallacy in what BPRP has done in the video.
@General12th
@General12th 7 жыл бұрын
_One dTwo plus Two dOne, that's the why we'll have some fun_ _Low dHigh minus High dLow, square the bottom and away we go_ Also, the integral by parts is _ultraviolet supervoodoo._
@KnakuanaRka
@KnakuanaRka 6 жыл бұрын
J.J. Shank Interesting, though I generally remember which functions go where in the quotient rule by doing a quick sanity check with x/1. And I never bothered to use a mnemonic for integration by parts, both because of the D-I method used by BPRP and elsewhere, but before even that, it’s pretty trivial to get it from the product rule.
@JakeWaas
@JakeWaas 6 жыл бұрын
Encore! Next, the chain rule please :D
@paulchapman8023
@paulchapman8023 4 жыл бұрын
You can’t really use ln(y) to prove the chain rule, since its derivative in terms of x depends on the chain rule; it would be circular reasoning. It’s reasonably simple anyway: Let y = f(g(x)) and let u = g(x). By implicit differentiation, dy/dx = dy/du * du/dx. dy/du = f’(u) = f’(g(x)) du/dx = g’(x) Thus dy/dx = f’(g(x)) * g’(x)
@rainbobow_8125
@rainbobow_8125 3 жыл бұрын
@@paulchapman8023 hello man, I was wondering, is the substitution with u and y necessary or is it just to write it in a cleaner way ? Trying to understand without much knowledge sorry
@johnspence8141
@johnspence8141 3 жыл бұрын
@@rainbobow_8125 chain rule is easy to prove using the product rule. Skip to about 4 min in: kzbin.info/www/bejne/a4PcdqODfayaZ7M
@thegoatman22
@thegoatman22 7 жыл бұрын
ISN'T IT
@PubicGore
@PubicGore 4 жыл бұрын
NAMELY
@gnikola2013
@gnikola2013 7 жыл бұрын
In the case of the f(x)^g(x) derivative, you could write the final expression in a nicer way. If you distribute the f^g, you get f^g(gf'/f)+f^g(ln f) which is equal to gf^(g-1)f'+ln(f^g'). I find this expression nicer because the first term resembles a simple power rule and the second term is similar to the original function. Also, the first term doesn't include the g' and the second term doesn't include f', so the first one gives us information about f' and the second one about g'. I love this
@TDRinfinity
@TDRinfinity 4 жыл бұрын
(x^a)'=ax^(a-1). (a^y)'=ln(a)*a^y. (x^y)'=yx^(y-1)*x'+ln(x)*x^y*y'.
@TDRinfinity
@TDRinfinity 4 жыл бұрын
This is like a gradient or something like that
@dancapps3374
@dancapps3374 2 жыл бұрын
Why is the derivative of ln(x) video private?
@thomasg6830
@thomasg6830 7 жыл бұрын
So good. 😎 And i like the outro music.
@johnspence8141
@johnspence8141 3 жыл бұрын
The easiest way to prove the quotient rule is the use the product rule and make the denominator function to the power of -1. Proceed with the product rule and use the power rule for the -1
@adblockturnedoff4515
@adblockturnedoff4515 7 жыл бұрын
Interestingly enough if you do d(x^x)/dx you get (x^x)(1 + ln(x)). This was the same thing discussed in one of the previous videos using a different method to explain something different but I believe he got to the same result which I think ties up stuff nicely.
@harleyspeedthrust4013
@harleyspeedthrust4013 3 жыл бұрын
i've heard that called the "generalized power rule." i remember looking it up a few years back for some CAS software because i had never learned how to differentiate a function raised to the power of another function. it's really nice to see where it comes from
@Supercat8835
@Supercat8835 7 жыл бұрын
I really enjoyed this. Do you have any plans to prove the chain rule in a future video?
@blackpenredpen
@blackpenredpen 7 жыл бұрын
Patrick Conan I asked peyam for it already. Maybe we will work something out
@lukapopovic5802
@lukapopovic5802 7 жыл бұрын
3blue1brown
@andrewcook1428
@andrewcook1428 6 жыл бұрын
New favorite proof, law of cosines or geometric summation are close seconds
@polyd2500
@polyd2500 7 жыл бұрын
Thanks, this really helped with my year 5 maths exam!
@laugernberg4817
@laugernberg4817 7 жыл бұрын
fun exercise: try to differentiate e^(kx), a^x, x^n etc. using the last formula at 17:40 :)
@1anya7d
@1anya7d 7 жыл бұрын
Came for the bonus, now back to my stupid test
@LouisEmery
@LouisEmery 2 жыл бұрын
Nice. One can check with either f or g as a constant or x and verify that it all works out.
@atomix1093
@atomix1093 7 жыл бұрын
I've got an interesting question. When you have (-1)ⁿ in a series, it means that the signs of terms will be alternating (+-+-). Does there exist a similar formula that would make every 3rd (or nth for that matter) term have a different sign (++-++-)? Or maybe even follow some kind of pattern, like 2 positive and 3 negative, etc?
@blackpenredpen
@blackpenredpen 7 жыл бұрын
AtomiX omg! That's actually on my to-do list. I used to ask my students about finding a formula for 0,0,1. Hint: use a trig function
@atomix1093
@atomix1093 7 жыл бұрын
blackpenredpen Thanks, I'll look into it :)
@MrSnowy737
@MrSnowy737 7 жыл бұрын
You could also use a rounding function like the floor function, eg (-1)^Floor[n/2] or a combination of them to make a pattern
@z01t4n
@z01t4n 7 жыл бұрын
AtomiX It's easy to generate patterns like this using sine/cosine. For example, "1-sqrt((sin(n*π/3))^2)*2/sqrt(3)" is equal to 0 at n=1, 2, 4, 5, 7, 8; and equal to 1 at n=0, 3, 6, 9. Of course, you can do it with -1 and 1 as well by using different constants.
@atomix1093
@atomix1093 7 жыл бұрын
I see, it's not as complicated as I thought it would be
@kevincaotong
@kevincaotong 7 жыл бұрын
Hey Blackpenredpen. I love your videos about calculus and I am currently stuck on an integral. I believe it involves the Zeta Function, which I could not find anywhere relating to integrals and solving them. Can you do a video on this integral please: integral from 0 to infinity of x^7/(1-e^x) dx. Thank you!
@dqrksun
@dqrksun 3 жыл бұрын
The last one should be called the REAL power rule
@Bhamilton-ws4go
@Bhamilton-ws4go 6 жыл бұрын
Very simple and elegant!
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Thanks.
@hydropage2855
@hydropage2855 3 жыл бұрын
Looking sharp, professor Chow hahaha
@blackpenredpen
@blackpenredpen 3 жыл бұрын
Thanks.
@NonTwinBrothers
@NonTwinBrothers 4 жыл бұрын
I can't stop watching your videos!! aaaaaaaaaaagh
@ЮрійЯрош-г8ь
@ЮрійЯрош-г8ь 6 жыл бұрын
Can we really take natural logarithm on both sides ? x^r can take negative values so we probably can't take logarithm ?
@xyzzyx9431
@xyzzyx9431 6 жыл бұрын
Юрій Ярош I think you're right, you cannot take the logarithm if x^r is negative. But there is a simple way to proof that the formula is also right for negstive values of x^r. Let's say the formula in the video is right for all x>0 in case r is odd (so x^r for x
@xyzzyx9431
@xyzzyx9431 6 жыл бұрын
Юрій Ярош A similar method can be used for the other proofs, I'm just gonna show it on the product rule for the others it works the same way. If y
@happygimp0
@happygimp0 5 жыл бұрын
What stops you from taking the ln of a negative number? ln(-R) = i*π + ln(R) with R ∈ ℝ ∖ 0 (I am not sure what happens when R is not real)
@cerwe8861
@cerwe8861 4 жыл бұрын
@@happygimp0 and if we differentiate, the imaginary part becomes 0, so we doesn't have to care about neg. Numbers.
@15schaa
@15schaa 7 жыл бұрын
What's a mathetician's favourite talk show host? ln(DeGeneres).
@EgoTeach
@EgoTeach 2 жыл бұрын
LOVE YOUR VIDEOS MATE. I'm taking IB Math AA HL and damn your videos are fine.
@12-343
@12-343 3 жыл бұрын
I thought I'd share the mnemonics my first calculus teacher gave us for the product and quoptient rules: 1 d 2 plus 2 d 1, calculus is so much fun and 2 d 1 minus 1 d 2, draw a line, and square below
@muslimahtutoress266
@muslimahtutoress266 3 жыл бұрын
This looks GREAT!! Thanks
@arts5852
@arts5852 4 жыл бұрын
Very cool explanation. I did not know it before, but now I understand how to get these rules. Thank you 👍
@thomasblackwell9507
@thomasblackwell9507 4 жыл бұрын
I really enjoy your proofs and derivations.
@davidrheault7896
@davidrheault7896 7 жыл бұрын
Great video with wonderful explanations :)
@yassinebouih2097
@yassinebouih2097 3 ай бұрын
تبارك الرحمن، افضل قناة..
@ilkinond
@ilkinond 4 жыл бұрын
That was a really beautiful presentation.
@magefreak9356
@magefreak9356 3 жыл бұрын
Love the enthusiasm ❤️
@SicilianTM
@SicilianTM 7 жыл бұрын
Product: One prime two plus two prime one, isn't mathematics fun? Quotient: Low d high less high d low, over the denominator squared we'll go.
@borismezhibovskiy7607
@borismezhibovskiy7607 7 жыл бұрын
Proving the power rule using e We start with some algebra to get it into the right form: 1) y = x^r 2) ln(y) = ln(x^r) 3) ln(y) = r*ln(x) 3) e^(ln(y)) = e^(r*ln(x)) 4) y = e^(r*ln(x)) And now we're ready for the only piece of calculus in this proof, using the e rule and the chain rule: 5) dy/dx = e^(r*ln(x)) * r/x Some more algebra to finish it up: 6) dy/dx = e^(ln(x^r)) * r/x 7) dy/dx = x^r * r/x And finally we arrive at the answer: 8) dy/dx = r * x^(r-1) You're welcome ;)
@borismezhibovskiy7607
@borismezhibovskiy7607 7 жыл бұрын
Similar thing can be done for the f^g rule. Why use implicit differentiation when the e method works?
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
Steps 2, 3, and 3 (you wrote it twice) were unnecessary
@stephenbeck7222
@stephenbeck7222 7 жыл бұрын
Of course the power rule in particular is fairly easy to show just with the limit definition of the derivative and some intuition about binomial expansion (the x^r term will cancel, and every term with h to a power greater than 1 in the original expansion will go to zero when you take the limit, so only one term remains) but using logs and implicit differentiation is a nice trick once you go through all the work of finding the derivative of the log.
@turbopotato4575
@turbopotato4575 7 жыл бұрын
the binomial proof is only valid for integer powers this is valid for all
@troybingham6426
@troybingham6426 4 жыл бұрын
Wow that's good. I'd never seen those formulas proven that way before. .. Nice.
@nuklearboysymbiote
@nuklearboysymbiote 5 жыл бұрын
but u can only take natural log of positive numbers… so why does this apply to negative y?
@happygimp0
@happygimp0 5 жыл бұрын
What stops you from taking the ln of a negative number? ln(-R) = i*π + ln(R) with R ∈ ℝ ∖ 0 (I am not sure what happens when R is not real)
@ryanlian7656
@ryanlian7656 7 жыл бұрын
Blackpenredpen, can you go over more about complexifying an integral? I'm currently in calc 2 and I'm loving it so far so I want to be very good at integrals, do you know where I can find hard practice problems with answers/go over process ?
@blackpenredpen
@blackpenredpen 7 жыл бұрын
Ryan Lian u can check out my playlist of integral battles. kzbin.info/aero/PLj7p5OoL6vGzuQqjZfMsAX7-R5fNji0cO
@ayalacuetoricardoantonio5282
@ayalacuetoricardoantonio5282 2 жыл бұрын
I solved my existential crisis
@OonHan
@OonHan 7 жыл бұрын
d/dx (x^x) thus is equal to x^x(ln x + 1) Thanks!!!!! I finally know!!!!!
@chessandmathguy
@chessandmathguy 7 жыл бұрын
neat and well presented. love it!
@SlingerDomb
@SlingerDomb 7 жыл бұрын
let me ask you a question "why you didn't put the abs sign when you take the ln both side?" is that because your assumption in the earlier? assume all function are nice. thanks
@igoralvespratescostaleite3577
@igoralvespratescostaleite3577 4 жыл бұрын
Wonderful!
@hgaclark9031
@hgaclark9031 7 жыл бұрын
Hi , please can you help me with a question?? It is: What is the sum of the following terms: 1+e^(-x)+e^(-2x)... And over what range of x is the solution valid?
@turbopotato4575
@turbopotato4575 7 жыл бұрын
Its a simple geometric series 1+e^(-x)+e^(-2x)... = 1+e^(-x)+(e^(-x))^2... = 1/(1-e^(-x)) Its convergent when e^-x < 1 so x > 0
@kevincaotong
@kevincaotong 7 жыл бұрын
If we use a substitution, u=e^x, we can simplify the sum as 1+ 1/u + 1/u^2 +... This an infinite geometric series, equal to 1/(1-1/u). Expanding u, we get 1/(1-e^-x). I'm guessing you mean over what domain of x does the solution converge, which is when |e^(-x)|0, which is the domain of the solution.
@ayushranjan6807
@ayushranjan6807 7 жыл бұрын
The sum is a geometric progression (GP), with first term a=1 [basically e^(0)] and common multiple r=e^(-x). (HOW - 1st term is e^0, 2nd term is [e^(-x)], 3rd term is [e^(-x)]^2 = [e^(-2x)], and so on) Now general formula for sum of a GP is S = a[1-(r^n)]/[1-r], where n is no of terms in the progression. If n-->inf, then for the sum to be convergent (approach to a finite number), |r|
@July-gj1st
@July-gj1st 6 жыл бұрын
Is it possible to do a similar thing for integration?
@Salarr
@Salarr 4 жыл бұрын
integration by parts can easily be proven via product rule. not sure about integration by substitution but I imagine it is easy to prove via chain rule
@GAMERCREEDbrickjet
@GAMERCREEDbrickjet 7 жыл бұрын
for the last one, you could have arranged the bracket to show it was product rule for the function g*ln(f), and then written it as (g*lnf)'
@jihanhamdan5465
@jihanhamdan5465 7 жыл бұрын
Awesomeee i love logarithms
@comprehensiveboycomprehens8786
@comprehensiveboycomprehens8786 7 жыл бұрын
This is just the innocent property of logarithms. :).
@PedroHenrique-zy3uh
@PedroHenrique-zy3uh 7 жыл бұрын
Awesome!
@trucid2
@trucid2 7 жыл бұрын
Nice. So we can get the derivative of x^x using the general formula, giving us the same answer: x^x*(1+ln(x))
@blackpenredpen
@blackpenredpen 7 жыл бұрын
trucid2 yes
@AhmedHan
@AhmedHan 3 жыл бұрын
You can't take ln() of every function. The domain matter my friend. You ignore the domain in a lot of videos.
@jkstudyroom
@jkstudyroom 4 жыл бұрын
Hey, you're using circular reasoning to find the derivative of natural log to prove the power rule.
@tanelkagan
@tanelkagan 2 жыл бұрын
Could we have a little more insight into what is meant by a "nice" function? Does it mean bijective? Continuous? Differentiable? Or something else?
@carultch
@carultch Жыл бұрын
In this context, it means continuous, differentiable, with a single-valued output.
@nicolasmalo8178
@nicolasmalo8178 4 жыл бұрын
Wooow ! But what if g or f is negative ??
@fountainovaphilosopher8112
@fountainovaphilosopher8112 7 жыл бұрын
Cool.
@aizek0827
@aizek0827 4 жыл бұрын
We have to use the CHEN LU!
@Alberto_4fun
@Alberto_4fun 7 жыл бұрын
You also can prove the product rule with the binomial theorem, using that in the derivative limit definition, using (x+h)^n as the binomio. I'm from México, so, sorry about my english
@blackpenredpen
@blackpenredpen 7 жыл бұрын
Magaña Drums u mean the power rule. Also that only works if n is positive whole number
@Alberto_4fun
@Alberto_4fun 7 жыл бұрын
Oh yes yes, the power rule, sorry
@helloitsme7553
@helloitsme7553 7 жыл бұрын
But isn't the derivative of ln(x) based on the derivative of e^x which is based on its expansion, which requires the power rule?
@MrSnowy737
@MrSnowy737 7 жыл бұрын
HelloItsMe the derivative of e^x doesn't require the power rule, it only needs the definition of e and limits
@gaurav.raj.mishra
@gaurav.raj.mishra 7 жыл бұрын
HelloItsMe Derivative of ln(x) can be proved without e^x.
@leonardromano1491
@leonardromano1491 7 жыл бұрын
Lookup "Differential algebra". An exponential is a function where differentiating is the identity, e.g. dF=id(F) then F is an exponential. Since you only need the chain-rule to show what the derivative of the inverse function is, it is sufficient to have both this definition of an exponential and the chain-rule for the derivative of it's inverse function.
@ayushranjan6807
@ayushranjan6807 7 жыл бұрын
The derivative of any function (if it exists ofc) can be obtained using "first principle". Knowledge of derivative of other functions isn't reqd for that, knowledge of limits is.
@naimulhaq9626
@naimulhaq9626 7 жыл бұрын
blackpenredpen Please do a video on differential logarithm, please.
@blackpenredpen
@blackpenredpen 7 жыл бұрын
Naimul Haq ? Like what?
@nabeelkhan4910
@nabeelkhan4910 6 жыл бұрын
U can also prove differentiation of constant power of x
@mobilkonto__free__9726
@mobilkonto__free__9726 6 жыл бұрын
Handsome af and smart
@nabeelkhan4910
@nabeelkhan4910 6 жыл бұрын
Dapper jacket!!! Boii!!
@popalofiti480
@popalofiti480 7 жыл бұрын
We know all of these derivatives, yet it feels one is quite elusive. What is the derivative of x factorial?
@alexander51413
@alexander51413 7 жыл бұрын
f(x)=x! is not continuous, so it doesn't really have a definitive, but if do some fancy analytic continuation and a lot of maths, you can end up with something called the gamma function (look it up - en.wikipedia.org/wiki/Gamma_function), which is essentially the same thing (Gamma(n)=(n-1)!) and that does indeed have a derivative.
@farrela6710
@farrela6710 4 жыл бұрын
search up the gamma function and the digamma function :D
@lucasnunes5185
@lucasnunes5185 7 жыл бұрын
Gee, someone knows in which video his friend Payam makes a tower of e's?
@paulh4828
@paulh4828 4 жыл бұрын
0:53 And that works only for all r€lR, x>0. So you proved it for a certain f : lR*+ ---> lR x ---> x^r And you did not generalize it for g : lR ---> lR x ---> x^r
@DancingRain
@DancingRain 7 жыл бұрын
There was a mnemonic a classmate taught me in college for the quotient rule: "Low D high minus high D low, square below"
@gmo2119
@gmo2119 3 жыл бұрын
This is a easy way to culculate derivative rules, but I think it will be not sufficiented for proofing. Because LN(x) is positive(>0) all of x. so if y(x) or f,g(x) is negative(
@isambo400
@isambo400 5 жыл бұрын
What if I have no g of f?
@casa1420
@casa1420 7 жыл бұрын
Muito bom!
@xyBubu
@xyBubu 4 жыл бұрын
the video about the derivative of ln(x) is private
@shivajigarg2383
@shivajigarg2383 7 жыл бұрын
If we are taking the log of everything, is it not necessary to have all of them a positive number or positive function. So are these proof ligitimate.
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
Shivaji Garg Not really. If we use complex numbers, then we are allowed to use any real function or number as input.
@arielfuxman8868
@arielfuxman8868 4 жыл бұрын
You can prove the quotient rule using the power rule and the product rule, no need for ln
@friedkeenan
@friedkeenan 7 жыл бұрын
Why do people always say the power rule is only for real numbers? I saw no operation in this proof that was real number specific, so why can't it work with complex numbers?
@carultch
@carultch Жыл бұрын
It can and does work for complex numbers as well. People just say it is limited to real numbers, to keep it simple as a Calc 1 topic. There is a proof that it works for complex numbers as well, using the complex logarithm.
@fernandobermudez2062
@fernandobermudez2062 5 жыл бұрын
Easier way to prove the power rule is with mathematical induction
@dcauz
@dcauz 2 жыл бұрын
I prefer dy/dx = f^(g-1)*(g*f'+g'*f*ln(f)) as the final form.
@allaincumming6313
@allaincumming6313 7 жыл бұрын
Logarithms rules!
@blackholesun4942
@blackholesun4942 10 ай бұрын
4:30
@johnjenuga3548
@johnjenuga3548 7 жыл бұрын
nice
@john-athancrow4169
@john-athancrow4169 6 жыл бұрын
Completion: The order of addition doesn't matter.
@sandmann6851
@sandmann6851 7 жыл бұрын
Link doesnt work
@jarikosonen4079
@jarikosonen4079 5 жыл бұрын
Differentiate the x^x with this power to the power rule... d/dx( x^x ) = x^x * ( 1 + ln(x) ) ? Maybe this all useful {f(x), g(x)} rules there is?
@teodorlamort3864
@teodorlamort3864 7 жыл бұрын
logarithms of negative values yayy
@nabeelkhan4910
@nabeelkhan4910 6 жыл бұрын
Prove the chain rule!!!!!!
@silvally4992
@silvally4992 4 жыл бұрын
Couldn't you just use the power rule?
@ViralVision
@ViralVision 7 жыл бұрын
Prove, using differential equations and laplace transforms, that sin(ix) = isinh(x)
@danilojrdelacruz5074
@danilojrdelacruz5074 7 жыл бұрын
OP
@Gilltes
@Gilltes 7 жыл бұрын
Hello, can you try and integrate e^x*cos(x) without using integration by parts?
@blackpenredpen
@blackpenredpen 7 жыл бұрын
Mário Marques does complexifying the integral count? If so, I did that already.
@Gilltes
@Gilltes 7 жыл бұрын
blackpenredpen You mean converting the expression in the integral to a complex expression? Yes, thats how I want to solve it.
@blackpenredpen
@blackpenredpen 7 жыл бұрын
Mário Marques here kzbin.info/www/bejne/o2GmaGONhql7hMk
@Gilltes
@Gilltes 7 жыл бұрын
blackpenredpen Amazing, thanks
@sardarbekomurbekov1030
@sardarbekomurbekov1030 6 жыл бұрын
Wow wow wow
@blackpenredpen
@blackpenredpen 6 жыл бұрын
hehehe
Why is the derivative of e^x equal to e^x?
11:59
blackpenredpen
Рет қаралды 403 М.
The Limit (do not use L'Hospital rule)
12:08
blackpenredpen
Рет қаралды 698 М.
coco在求救? #小丑 #天使 #shorts
00:29
好人小丑
Рет қаралды 120 МЛН
Мен атып көрмегенмін ! | Qalam | 5 серия
25:41
The evil clown plays a prank on the angel
00:39
超人夫妇
Рет қаралды 53 МЛН
Правильный подход к детям
00:18
Beatrise
Рет қаралды 11 МЛН
an A5 Putnam Exam integral for calc 2 students
19:10
blackpenredpen
Рет қаралды 430 М.
the COOLEST limit on YouTube!
9:50
blackpenredpen
Рет қаралды 51 М.
You probably haven't solved a square root equation like this before
6:46
i^i
12:27
blackpenredpen
Рет қаралды 1,2 МЛН
A Brilliant Limit
16:58
blackpenredpen
Рет қаралды 1,4 МЛН
Feynman's Technique of Integration
10:02
blackpenredpen
Рет қаралды 597 М.
7 Outside The Box Puzzles
12:16
MindYourDecisions
Рет қаралды 518 М.
Don't bother me, I am thinking. (Lambert W function)
9:29
blackpenredpen
Рет қаралды 25 М.
coco在求救? #小丑 #天使 #shorts
00:29
好人小丑
Рет қаралды 120 МЛН