Sin 30 = 0.5 = h/28 = H/42. h = 14, H = 21. Area = 0.5*(H*56 - h*21) = 0.5*(1176 - 294) = 441
@PreMath Жыл бұрын
Excellent! Thanks for sharing! Cheers! You are awesome. Keep it up 👍 Love and prayers from the USA! 😀
@arthurschwieger82 Жыл бұрын
Nice solution! I used the 30/60/90 triangle approach by drawing a line from E down, perpendicular to AB. Also one from C down, perpendicular to AB. That gives me the height of each of the same triangles you were doing. From there, our numbers are basically the same as the ration of the height of each triangle is 1/2 of the hypotenuse. You used Sin(30) to get 1/2 and I used the 30/60/90 triangle relationship to get the 1/2. And when I did my addition correctly, I ended up with the same value as I should. It seems that 21 + 35 = 56 not 46. ;-)
@solomou146 Жыл бұрын
Ακριβώς ίδια λύση.
@yalchingedikgedik8007 Жыл бұрын
Thanks PreMath That very useful and nice
@murphygreen8484 Жыл бұрын
Yay, I got one on my own first!
@HappyFamilyOnline Жыл бұрын
Very well explained👍 Thanks for sharing😊
@anthonycheng1765 Жыл бұрын
Another method: use similar triangle. Triangle ACB ~ Triangle ADE (SAS Similarity). AE/AB = AC/AD = 1/2 Area ratio = 1:4 Area of Triangle: Area of quadrilateral is 1:(4-1) (1:3). Area = 147*3=441
@PreMath Жыл бұрын
Thanks for sharing! Cheers! You are awesome. Keep it up 👍 Love and prayers from the USA! 😀
@soli9mana-soli4953 Жыл бұрын
Can you say better how did youi find Area of quadrilateral is 1:(4-1) (1:3). Area = 147*3=441 ??
@alster724 Жыл бұрын
Paused the video at 2:08 and used the same concept for the big ∆ABC and solved it on my own. Same drill, fast forwarded to the end to double check and got the same answer. Easy! God bless from The Philippines 🇵🇭
@theoyanto Жыл бұрын
Another Gem !! I've started to catalogue the rules and theorems you present in the Google Keep app, so i can quickly reference various key lessons, it would be all to easy to let all those sparkling gems fade with time Thanks again 🤓👍🏻
@ybodoN Жыл бұрын
Alternatively: AD = ½ AC and AE = ½ AB, thus ABC and AED are in the ratio 4:1. Therefore, the area of the blue quadrilateral is 3·½·AE·AD·sin 30°.
@santiagoarosam430 Жыл бұрын
∠CAB=30º → La altura de ∆ACB respecto a la base AC es h=(21+35)/2=28 → Área ∆ACB =(28+14)h/2=588 →→→ Valores relativos de las áreas componentes: ∆CED=a → ∆EAD=(28/14)a=2a → ∆DCB=(35/21)3a=5a → ∆ABC=a+2a+5a=8a → Área relativa del cuadrilátero DBCE =a+5a=6a →→→ Área azul =588(6/8) =441 Gracias y un saludo.
@williamwingo4740 Жыл бұрын
No peeking, no calculators: It's simpler just to remember that in a 30-degree right triangle, the side opposite the 30-degreee angle is one-half the hypotenuse. Construct two right triangles by dropping perpendiculars from C and E to the bottom line AB. Call them CF and EG. CF is the altitude of the big triangle ABC and equals (1/2)(28 + 14) = (1/2)(42) = 21; so the area of ABC is (1/2)(21)(21 + 35) = (1/2)(21)(56) = (21)(28) = 588 (did use pencil and paper for that last multiplication). EG is the altitude of the small triangle AED and equals (1/2)(28) = 14; so the area of AED is (1/2)(14)(21) = (7)(21) = 147. Finally, the area of the quadrilateral ECBD is the difference; or, 588 -- 147 = 441. And the day is off to a good start. Cheers. 🤠
@Maaloma125 Жыл бұрын
How are you how do you write in this wonderful way? I hope you will answer me
@PreMath Жыл бұрын
Hello dear, we use Camtasia Techsmith utility along with Canva/photoshop... Thanks for asking. Take care
@Chris-gd4gj Жыл бұрын
Just use formula 1/2*a*b*sin angle: 1/2(28+14)(21+35)sin30-1/2(28)(21)sin30 Then u can find the answer
@AmjadAli-lk3pf Жыл бұрын
Please explain the quadratic formula briefly....
@PreMath Жыл бұрын
Dear Amjad, I've already made a video on this topic! Please check out the link: kzbin.info/www/bejne/iZyxZ4qFo8llaZo Take care
@AmjadAli-lk3pf Жыл бұрын
Yes sir I already checked this vedio..please explain with a sketch,where is use this formula quadratic
@AmjadAli-lk3pf Жыл бұрын
My concept still not clear on this quadratic formula.
@giuseppemalaguti435 Жыл бұрын
56*21/2-14*21/2=21*21=441
@PreMath Жыл бұрын
Excellent! Thanks for sharing! Cheers! You are awesome. Keep it up 👍 Love and prayers from the USA! 😀
@carlinoiavarone8342 Жыл бұрын
I find 882 the area of irregulare quadrilater with the formula of bramapughta
@wackojacko3962 Жыл бұрын
Circular functions like Sine flourished in the Gupta empire of India. 🙂
@PreMath Жыл бұрын
Thanks for your feedback! Cheers! You are awesome. Keep smiling👍 Love and prayers from the USA! 😀
@prabhagupta6871 Жыл бұрын
The word sine was first used by Aryabhatta and then later it was translated to Arabic and then latin and greek which we use today
@militarymatters685 Жыл бұрын
Solved it
@PreMath Жыл бұрын
Excellent! You are awesome. Keep it up 👍 Love and prayers from the USA! 😀
@militarymatters685 Жыл бұрын
@@PreMath thank you so much sir Looking forward to your next video
@philippeganty Жыл бұрын
Since your data is enough, here is a solution without trigonometry: Let's draw the height of the triangle ADE which passes through E and intersects AD in F, and the height of the triangle ABC which passes through C and intersects AB in G. We then have right triangles of type 30°/60°/90°, so EF=AE/2=14 and CG=AC/2=21. Then Area ABC-Area ADE=(56*21/2)-(21*14/2). By simplification, we get = 3^2*7^2=441.