Such a great holidays are going on with incoming fantastic questions everyday ❤
@PreMath3 күн бұрын
Excellent! Glad to hear that! Thanks for the feedback ❤
@zupitoxyt3 күн бұрын
@PreMath ur welcome
@harikatragadda3 күн бұрын
Draw BE perpendicular to AC. ∆BEC is Congruent to ∆BDC by ASA. Since ∠ABE =α , ∆AEB is Similar to ∆BEC. EC/BC = 2x/3x, EC= 16, and hence BE=8√5 and AB=12√5 AREA = ½AB*BC +½BE*EC= 208√5
@reynaldowify3 күн бұрын
Great, simpliest approach
@PreMath2 күн бұрын
Excellent! Thanks for sharing ❤️
@marioalb97263 күн бұрын
Both right triangles are similar. b / 2x = 24 / 3x --> b = 16cm Pytagorean theorem: (2x)² = 24² - b² = 24² - 16² x = √80 = 4√5 cm Yellow area : A = ½bh + ½bh A = ½*16*8√5 + ½*24*12√5 A = 64√5 + 144√5 = 208√5cm²
@PreMath2 күн бұрын
Thanks for the feedback ❤️
@marioalb97263 күн бұрын
Both right triangles are similar. Labelling 'c'=AC and 'b'=DC c + b = 3/2 *24 + 2/3 *24 = 52 cm cosα = 2x/3x = 2/3 --> α= 48,19° A = ½.a.c.sinα + ½a.b.sinα A = ½.a.(c+b).sinα A = ½.24.52.√5/3 = 208√5 cm²
@PreMath2 күн бұрын
Excellent! Thanks for sharing ❤️
@marioalb97263 күн бұрын
Both right triangles are similar. Labelling 'c'=AC and 'b'=DC c - b = 3/2 *24 - 2/3 *24 = 20cm Pytagorean theorem: (3x)²=(2x)²+(c-b)² 9x²-4x²= 5x²= 20² --> x= 4√5 cm Yellow area : A = ½b₁h₁ - ½b₂h₂ A = ½(6x)*24 - ½(2x)(c-b) A = 288√5 - 80√5 = 208√5cm²
@PreMath2 күн бұрын
Thanks for sharing ❤️
@allanflippin24533 күн бұрын
I have no new concepts, but I find the math is simplified by reordering it. 1) Discovering that ABC and BCD are similar, the dimensions in BCD have a 2/3 ratio to those in ABC. 2) Due to the 2/3 ratio, DC = 16 3) Area = (2x * 16 + 3x * 24) / 2 = 52x 4) Use pythagorean theorem on BCD. Notice that all three sides are divisible by 2, so divide them by 2: x^2 + 8^2 = 12^2. 5) x^2 = 144 - 64 = 80. x = 4 * sqrt(5) 6) Multiply by step 3's result: area = 208 * sqrt(5)
@PreMath2 күн бұрын
Excellent! Thanks for sharing ❤️
@marioalb97262 күн бұрын
Both right triangles are similar b = 2/3 a = 2/3*24 = 16 cm c = 3/2 a = 3/2*24 = 36 cm cosα = 2/3 --> sinα = √5/3 A= ½a.c.sinα + ½a.b.sinα A= ½.24.(36+16).√5/3 = 208√5 cm²
@PreMath2 күн бұрын
Excellent! Thanks for sharing ❤️
@WernHerr3 күн бұрын
My solution: 3x:24 =2x:DC and DC=16. Pythagoras in BDC and x=4*sqrt(5). Area see solution of PreMath!
@Aligakore2 күн бұрын
Did it this way too 😊
@PreMath2 күн бұрын
Excellent! Thanks for sharing ❤️
@RK-tf8pq5 сағат бұрын
Exactly, I had used the proportionality to the other triangle to get AC = 36. Then Pythagorean theorem to the triangle ABC to get X.
You are very welcome! I'm glad you found it helpful. 😀
@alexundre87453 күн бұрын
Bom dia Sr Muitíssimo obrigado pelas aulas
@PreMath2 күн бұрын
You are very welcome!😀 Thanks for the feedback ❤️
@PrithwirajSen-nj6qq3 күн бұрын
Extend AB to E so that BE =3x Extend CD to E In triangle BDE DE = √(9x ^2 -4x^2)=x√5 tan α=x √5/2x=√5/2 In triangle ABC tan α=3x /24 =√5/2 x = 4√5 3x =12√5 2x =8√5 In triangle BCD tanα= 8√5/CD =√5/2 >CD =16 Area of quadrilateral =1/2*12√5*24 +1/2*8√5*16 =144√5 +64√5 =208√5 sq units
@PreMath2 күн бұрын
Excellent! Thanks for sharing ❤️
@marcgriselhubert39153 күн бұрын
Using a bit more trigonometry: Let's name alpha = t (easier to write). In ABC: tan(t) = (3.x)/24 = x/8. In BDC: sin(t) = (2.x)/24 = x/12. So by division we have: 1/cos(t) = (x/8)/(x/12) = 3/2 As (1 + (tan(t))^2)) = 1/((cos(t)^2) we then have: 1 + ((x^2)/64) = 9/4, and then x^2 = (5/4).64 = 80, and so x = sqrt(80) = 4.sqrt(5) The area of ABC is (1/2).(3.x).24 = (1/2).(12.sqrt(5)).24 = 144.sqrt(5) The area of BDC is (1/2).(2.x).DC = (1/2).(2.x).((2.x)/tan(t)) = (1/2).(2.x).16 = (1/2).(8.sqrt(5).16 = 64.sqrt(5), and finally the yellow area is 144.sqrt(5) + 64.sqrt(5) = 208.sqrt(5).
@PreMath2 күн бұрын
Excellent! Thanks for sharing ❤️
@AmirgabYT21853 күн бұрын
S=208√5≈465,92≈466
@PreMath2 күн бұрын
Excellent! Thanks for sharing ❤️
@cyruschang19043 күн бұрын
We have two similar right triangles whose linear ratio = 3 : 2 The long leg of the larger triangle = the hypotenuse of the smaller triangle = 24 So the three sides of the large triangle = 3x - 24 - 36 And the three sides of the small triangle = 2x - 16 - 24 (2x)^2 + (16)^2 = (24)^2 x^2 = 144 - 64 = 80 Area = (3√80)(24)/2 + (2√80)(16)/2 = (4√80)(9 + 4) = 208√5)
@PreMath2 күн бұрын
Excellent! Thanks for sharing ❤️
@cyruschang19042 күн бұрын
@ Thank YOU
@MrPaulc2223 күн бұрын
The first part is checking on triangle similarity. As they both have two angles that are identical, the third must be, too., so similar by AAA As the corresponding side lengths are 2/3 or 3/2 (due to 2x, 3x), depending on perspective, AC = 36 and DC = 16. This doesn't seem right, but no matter. 24/3x = 16/2x, which just gives 48x = 48x, so not much help. The total area is 52x un^2, but I need to find a value for x. Ref BCD: 16^2 + (2x)^2 = 24^2 256 + 4x^2 = 576. 4x^2 = 320 x^2 = 80 x = sqrt(80) or 4*sqrt(5). 8*2*sqrt(80) + 12*3*sqrt(80) = 52*sqrt(80) = 208*sqrt(5) approximates to 465.1 un^2. Although I went down a dead end at first, I have left that part up to show my initial error.
Why don’t you use proportions? AB/BC = 3x/24 = tan α and BD/BC = 2x/24 = sin α => cos α = 2/3 sqrt(3²-2²) = sqrt(5) plus 24/2 = 12 is the scaling factor for the upper triangle. A_upper = 12 * sqrt(5) * 24 / 2 = 144 * sqrt(5) A_lower = A_upper * (2/3)² = 4/9 * 144 * sqrt(5) = 64 * sqrt(5) A = 208 * sqrt(5)
@PreMath2 күн бұрын
Thanks for the feedback ❤️
@unknownidentity28463 күн бұрын
Let's find the area: . .. ... .... ..... Since ABC and BCD are both right triangles, we can conclude: tan(∠ACB) = AB/BC sin(∠BCD) = BD/BC tan(α) = AB/BC sin(α) = BD/BC BC = AB/tan(α) BC = BD/sin(α) AB/tan(α) = BD/sin(α) AB*cos(α)/sin(α) = BD/sin(α) AB*cos(α) = BD (3x)*cos(α) = 2x ⇒ cos(α) = 2x/(3x) = 2/3 For the right triangle BCD we obtain: cos(∠BCD) = CD/BC cos(α) = CD/BC 2/3 = CD/24 ⇒ CD = 24*2/3 = 16 Now we can apply the Pythagorean theorem to the right triangle BCD: CD² + BD² = BC² 16² + (2x)² = 24² 256 + 4x² = 576 4x² = 320 x² = 80 ⇒ x = √80 = 4√5 Now we are able to calculate the area of the yellow region: AB = 3x = 12√5 BD = 2x = 8√5 A(yellow) = A(ABC) + A(BCD) = (1/2)*AB*BC + (1/2)*BD*CD = (1/2)*(12√5)*24 + (1/2)*(8√5)*16 = 144√5 + 64√5 = 208√5 ≈ 465.10 Best regards from Germany
@zupitoxyt3 күн бұрын
Hnn I had a dought on you
@PreMath2 күн бұрын
Excellent! Thanks for sharing ❤️
@imetroangola173 күн бұрын
Solução: sen α = 2x/24 e tg α = 3x/24 cos α = sen α/tg α =2/3. Como sen² α + cos² α =1, então: (2x/24)² + (2/3)² = 1 (x/12)² = 1 - 4/9 = 5/9 x/12 = √5/3. Portanto, x = 4√5. Assim, cos α = 2/3 = CD/24 → CD = 16. A área S amarela é dada por: S = 3x. 24/2 + 2x. 16/2 S = 36x + 16x = 52x S = 52 × 4√5 *S = 208√5 unidades quadradas.*
@PreMath2 күн бұрын
Excellent! Thanks for sharing ❤️
@marioalb97262 күн бұрын
Both right triangles are similar cosα = b/24= 2x/3x = 2/3 b = 16 cm ; sinα = √5/3 A₁= ½absinα= ½.24.16.√5/3= 64√5 cm² A₂= A₁/cos²α= 64√5/(2/3)²= 144√5 cm² A= A₁+ A₂ = 208√5 cm² ( Solved √ )
@PreMath2 күн бұрын
Excellent! Thanks for sharing ❤️
@jonathanburros67623 күн бұрын
Since angle with measure a is in both right triangles sin a = (3X)/[sqrt([ 9 X^2 +24^2)] = (2 X)/24 Solve for X DC =sqrt( 24^2 -24^2) The sum of the areas equals (1/2)(3 X)(24) + (1/2)(2 X)DC
@PreMath2 күн бұрын
Thanks for the feedback ❤️
@santiagoarosam4303 күн бұрын
Razón de semejanza entre ABC y BDC, s=2/3→ s²=4/9→ 24*3x*4/9=DC*2x→ DC=16→ (2x)²=24²-16²→ x=4√5→ Área ABDC =(3*4√5*24/2)*[1+(4/9)] =208√5 u². Gracias y un saludo cordial.
@PreMath2 күн бұрын
Excellent! Thanks for sharing ❤️
@relens2Күн бұрын
Since they are similar, and the ratio of the smaller to the larger is ⅔, the area of the smaller triangle will be (⅔)^2 or 4/9 of the larger. So the total area will be 13/9 the area of the larger. After solving for x as you did, one need only calc the area of the larger and multiply it by 13/9 - no need to solve for y. Yay!
@sergioaiex39663 күн бұрын
Solution: Let's label AC = a and CD = b The Triangles ABC and BCD are similar, so we have proportions a/24 = 24/b ab = 576 ... ¹ a/3x = 24/2x a = 3x . 24/2x a = 36 Replacing in Equation ¹ 36 . b = 576 b = 16 Applying Pythagorean Theorem in Triangle BCD to calculate "x" (2x)² + (16)² = (24)² 4x² + 256 = 576 4x² = 320 x² = 80 x = 4√5 AB = 3x = 3 . (4√5) AB = 12√5 BD = 2x = 2 . (4√5) BD = 8√5 Once again, we'll applying Pythagorean Theorem in Triangle BCD to calculate "b" (8√5)² + b² = (24)² 320 + b² = 576 b² = 256 b = 16 Yellow Shaded Area = (½ 12√5 . 24) + (½ 8√5 . 16) Yellow Shaded Area = 144√5 + 64√5 Yellow Shaded Area = 208√5 Square Units ✅ Yellow Shaded Area ≈ 465,1021 Square Units ✅
CD/2x= 24/3x CD= 16 (2x)^2 + 16^2 = 24^2 x= square root of 80 areas of the 2 triangles can calculated .
@PreMath2 күн бұрын
Thanks for the feedback ❤️
@blogfilmes11343 күн бұрын
Fiz por sen e tg
@wackojacko39623 күн бұрын
I choke on math exams. ...so for study group before an exam always ask what is gonna be the easiest problem on the exam and what is gonna be the hardest problem on the exam cuz I'm gonna overthink both and get em wrong. ...So if this is misinformation please delete my comment. I'm thinking AC=36. am I close? 🤞
@PreMath2 күн бұрын
😀 Thanks for sharing ❤️
@LuisdeBritoCamacho3 күн бұрын
STEP-BY-STEP-RESOLUTION PROPOSAL : Statement : Triangle [ABC] similar to Triangle [BCD] 01) Let DC = Y 02) 3X / 24 = 2X / Y ; X / 8 = 2X / Y ; Y = 16 lin un 03) DC = 16 lin un 04) 2X / 16 = 3X / 24 ; 2X / 3X = 16 / 24 ; 2 / 3 = 16 / 24 ; (2 * 24) = (3 * 16) ; 48 = 48 - True !! 05) Let AC = Z 06) 24 / 2X = Z / 3X ; 12 / X = Z / 3X ; Z = 36 lin un 07) AC = 36 lin un 08) Linear Ratio (R) = 3 / 2 or R = 1,5 09) Let's find X value!! 10) (24^2 - 16^2) = (2X)^2 ; 320 = 4X^2 ; 320 ; X^2 = 320 / 4 ; X^2 = 80 ; X = sqrt(80) ; X = 4*sqrt(5) lin un Or; 11) (36^2 - 24^2) = (3X)^2 ; 720 = 9X^2 ; X^2 = 80 ; X = sqrt(80) ; X = 4*sqrt(5) lin un 12) 3X = 12*sqrt(5) and 2X = 8*sqrt(5) 13) A(1) = (8*sqrt(5) * 16) / 2 ; A(1) = 64*sqrt(5) sq un ; A(1) ~ 143 sq un 14) A(2) = (12*sqrt(5)) * 24 / 2 ; A(2) = 144*sqrt(5) sq un ; A(2) ~ 322 sq un 15) R = 1.5 => R^2 = 2,25 16) 143 * R^2 ~ 322 ; 143 * 2,25 ~ 322 - True !! 17) Yellow Shade Area (YSA) = A(1) + A(2) ; YSA = (143 + 322) ; YSA = 465 sq un So, after all this Tedius Algebra; OUR BEST ANSWER IS : Yellow Shaded Area is approx. equal to 465 Square Units. Exact Form = (144 + 64)*sqrt(5) Square Units = 208*sqrt(5) Square Units. Best Regards from Al - Andalus; Al - Ushbuna !!
@PreMath2 күн бұрын
Excellent! Thanks for sharing ❤️🙏
@nicholastoop76352 күн бұрын
3z/24 = 2x/CD so CD=16 4x² = 24²-16² = 8×40 so x²=80 area of triangles= ½72x + ½32x = 52x area = 52×sqrt(80} =208sqrr(5)