Can you calculate area of the Yellow shaded Quadrilateral? | (Triangles) |

  Рет қаралды 20,066

PreMath

PreMath

Күн бұрын

Пікірлер: 66
@zupitoxyt
@zupitoxyt 3 күн бұрын
Such a great holidays are going on with incoming fantastic questions everyday ❤
@PreMath
@PreMath 3 күн бұрын
Excellent! Glad to hear that! Thanks for the feedback ❤
@zupitoxyt
@zupitoxyt 3 күн бұрын
@PreMath ur welcome
@harikatragadda
@harikatragadda 3 күн бұрын
Draw BE perpendicular to AC. ∆BEC is Congruent to ∆BDC by ASA. Since ∠ABE =α , ∆AEB is Similar to ∆BEC. EC/BC = 2x/3x, EC= 16, and hence BE=8√5 and AB=12√5 AREA = ½AB*BC +½BE*EC= 208√5
@reynaldowify
@reynaldowify 3 күн бұрын
Great, simpliest approach
@PreMath
@PreMath 2 күн бұрын
Excellent! Thanks for sharing ❤️
@marioalb9726
@marioalb9726 3 күн бұрын
Both right triangles are similar. b / 2x = 24 / 3x --> b = 16cm Pytagorean theorem: (2x)² = 24² - b² = 24² - 16² x = √80 = 4√5 cm Yellow area : A = ½bh + ½bh A = ½*16*8√5 + ½*24*12√5 A = 64√5 + 144√5 = 208√5cm²
@PreMath
@PreMath 2 күн бұрын
Thanks for the feedback ❤️
@marioalb9726
@marioalb9726 3 күн бұрын
Both right triangles are similar. Labelling 'c'=AC and 'b'=DC c + b = 3/2 *24 + 2/3 *24 = 52 cm cosα = 2x/3x = 2/3 --> α= 48,19° A = ½.a.c.sinα + ½a.b.sinα A = ½.a.(c+b).sinα A = ½.24.52.√5/3 = 208√5 cm²
@PreMath
@PreMath 2 күн бұрын
Excellent! Thanks for sharing ❤️
@marioalb9726
@marioalb9726 3 күн бұрын
Both right triangles are similar. Labelling 'c'=AC and 'b'=DC c - b = 3/2 *24 - 2/3 *24 = 20cm Pytagorean theorem: (3x)²=(2x)²+(c-b)² 9x²-4x²= 5x²= 20² --> x= 4√5 cm Yellow area : A = ½b₁h₁ - ½b₂h₂ A = ½(6x)*24 - ½(2x)(c-b) A = 288√5 - 80√5 = 208√5cm²
@PreMath
@PreMath 2 күн бұрын
Thanks for sharing ❤️
@allanflippin2453
@allanflippin2453 3 күн бұрын
I have no new concepts, but I find the math is simplified by reordering it. 1) Discovering that ABC and BCD are similar, the dimensions in BCD have a 2/3 ratio to those in ABC. 2) Due to the 2/3 ratio, DC = 16 3) Area = (2x * 16 + 3x * 24) / 2 = 52x 4) Use pythagorean theorem on BCD. Notice that all three sides are divisible by 2, so divide them by 2: x^2 + 8^2 = 12^2. 5) x^2 = 144 - 64 = 80. x = 4 * sqrt(5) 6) Multiply by step 3's result: area = 208 * sqrt(5)
@PreMath
@PreMath 2 күн бұрын
Excellent! Thanks for sharing ❤️
@marioalb9726
@marioalb9726 2 күн бұрын
Both right triangles are similar b = 2/3 a = 2/3*24 = 16 cm c = 3/2 a = 3/2*24 = 36 cm cosα = 2/3 --> sinα = √5/3 A= ½a.c.sinα + ½a.b.sinα A= ½.24.(36+16).√5/3 = 208√5 cm²
@PreMath
@PreMath 2 күн бұрын
Excellent! Thanks for sharing ❤️
@WernHerr
@WernHerr 3 күн бұрын
My solution: 3x:24 =2x:DC and DC=16. Pythagoras in BDC and x=4*sqrt(5). Area see solution of PreMath!
@Aligakore
@Aligakore 2 күн бұрын
Did it this way too 😊
@PreMath
@PreMath 2 күн бұрын
Excellent! Thanks for sharing ❤️
@RK-tf8pq
@RK-tf8pq 5 сағат бұрын
Exactly, I had used the proportionality to the other triangle to get AC = 36. Then Pythagorean theorem to the triangle ABC to get X.
@giuseppemalaguti435
@giuseppemalaguti435 3 күн бұрын
3x=24tgα...2x=24sin α...3/2=1/cosα .cosα=2/3..sin a=√5/3..2x=24*√5/3...x=4√5.
@PreMath
@PreMath 2 күн бұрын
Excellent! Thanks for sharing ❤️
@jamestalbott4499
@jamestalbott4499 3 күн бұрын
Thank you!
@PreMath
@PreMath 3 күн бұрын
You are very welcome! I'm glad you found it helpful. 😀
@alexundre8745
@alexundre8745 3 күн бұрын
Bom dia Sr Muitíssimo obrigado pelas aulas
@PreMath
@PreMath 2 күн бұрын
You are very welcome!😀 Thanks for the feedback ❤️
@PrithwirajSen-nj6qq
@PrithwirajSen-nj6qq 3 күн бұрын
Extend AB to E so that BE =3x Extend CD to E In triangle BDE DE = √(9x ^2 -4x^2)=x√5 tan α=x √5/2x=√5/2 In triangle ABC tan α=3x /24 =√5/2 x = 4√5 3x =12√5 2x =8√5 In triangle BCD tanα= 8√5/CD =√5/2 >CD =16 Area of quadrilateral =1/2*12√5*24 +1/2*8√5*16 =144√5 +64√5 =208√5 sq units
@PreMath
@PreMath 2 күн бұрын
Excellent! Thanks for sharing ❤️
@marcgriselhubert3915
@marcgriselhubert3915 3 күн бұрын
Using a bit more trigonometry: Let's name alpha = t (easier to write). In ABC: tan(t) = (3.x)/24 = x/8. In BDC: sin(t) = (2.x)/24 = x/12. So by division we have: 1/cos(t) = (x/8)/(x/12) = 3/2 As (1 + (tan(t))^2)) = 1/((cos(t)^2) we then have: 1 + ((x^2)/64) = 9/4, and then x^2 = (5/4).64 = 80, and so x = sqrt(80) = 4.sqrt(5) The area of ABC is (1/2).(3.x).24 = (1/2).(12.sqrt(5)).24 = 144.sqrt(5) The area of BDC is (1/2).(2.x).DC = (1/2).(2.x).((2.x)/tan(t)) = (1/2).(2.x).16 = (1/2).(8.sqrt(5).16 = 64.sqrt(5), and finally the yellow area is 144.sqrt(5) + 64.sqrt(5) = 208.sqrt(5).
@PreMath
@PreMath 2 күн бұрын
Excellent! Thanks for sharing ❤️
@AmirgabYT2185
@AmirgabYT2185 3 күн бұрын
S=208√5≈465,92≈466
@PreMath
@PreMath 2 күн бұрын
Excellent! Thanks for sharing ❤️
@cyruschang1904
@cyruschang1904 3 күн бұрын
We have two similar right triangles whose linear ratio = 3 : 2 The long leg of the larger triangle = the hypotenuse of the smaller triangle = 24 So the three sides of the large triangle = 3x - 24 - 36 And the three sides of the small triangle = 2x - 16 - 24 (2x)^2 + (16)^2 = (24)^2 x^2 = 144 - 64 = 80 Area = (3√80)(24)/2 + (2√80)(16)/2 = (4√80)(9 + 4) = 208√5)
@PreMath
@PreMath 2 күн бұрын
Excellent! Thanks for sharing ❤️
@cyruschang1904
@cyruschang1904 2 күн бұрын
@ Thank YOU
@MrPaulc222
@MrPaulc222 3 күн бұрын
The first part is checking on triangle similarity. As they both have two angles that are identical, the third must be, too., so similar by AAA As the corresponding side lengths are 2/3 or 3/2 (due to 2x, 3x), depending on perspective, AC = 36 and DC = 16. This doesn't seem right, but no matter. 24/3x = 16/2x, which just gives 48x = 48x, so not much help. The total area is 52x un^2, but I need to find a value for x. Ref BCD: 16^2 + (2x)^2 = 24^2 256 + 4x^2 = 576. 4x^2 = 320 x^2 = 80 x = sqrt(80) or 4*sqrt(5). 8*2*sqrt(80) + 12*3*sqrt(80) = 52*sqrt(80) = 208*sqrt(5) approximates to 465.1 un^2. Although I went down a dead end at first, I have left that part up to show my initial error.
@PreMath
@PreMath 2 күн бұрын
Excellent! Thanks for the feedback ❤️
@himo3485
@himo3485 3 күн бұрын
ABC∞BDC 3x/24=2x/DC DC=16 (2x)²+16²=24² 4x²+256=576 4x²=320 x²=80 x=4√5 Yellow shaded area = 12√5*24*1/2 + 8√5*16*1/2 = 208√5
@PreMath
@PreMath 2 күн бұрын
Excellent! Thanks for sharing ❤️
@andrepiotrowski5668
@andrepiotrowski5668 3 күн бұрын
Why don’t you use proportions? AB/BC = 3x/24 = tan α and BD/BC = 2x/24 = sin α => cos α = 2/3 sqrt(3²-2²) = sqrt(5) plus 24/2 = 12 is the scaling factor for the upper triangle. A_upper = 12 * sqrt(5) * 24 / 2 = 144 * sqrt(5) A_lower = A_upper * (2/3)² = 4/9 * 144 * sqrt(5) = 64 * sqrt(5) A = 208 * sqrt(5)
@PreMath
@PreMath 2 күн бұрын
Thanks for the feedback ❤️
@unknownidentity2846
@unknownidentity2846 3 күн бұрын
Let's find the area: . .. ... .... ..... Since ABC and BCD are both right triangles, we can conclude: tan(∠ACB) = AB/BC sin(∠BCD) = BD/BC tan(α) = AB/BC sin(α) = BD/BC BC = AB/tan(α) BC = BD/sin(α) AB/tan(α) = BD/sin(α) AB*cos(α)/sin(α) = BD/sin(α) AB*cos(α) = BD (3x)*cos(α) = 2x ⇒ cos(α) = 2x/(3x) = 2/3 For the right triangle BCD we obtain: cos(∠BCD) = CD/BC cos(α) = CD/BC 2/3 = CD/24 ⇒ CD = 24*2/3 = 16 Now we can apply the Pythagorean theorem to the right triangle BCD: CD² + BD² = BC² 16² + (2x)² = 24² 256 + 4x² = 576 4x² = 320 x² = 80 ⇒ x = √80 = 4√5 Now we are able to calculate the area of the yellow region: AB = 3x = 12√5 BD = 2x = 8√5 A(yellow) = A(ABC) + A(BCD) = (1/2)*AB*BC + (1/2)*BD*CD = (1/2)*(12√5)*24 + (1/2)*(8√5)*16 = 144√5 + 64√5 = 208√5 ≈ 465.10 Best regards from Germany
@zupitoxyt
@zupitoxyt 3 күн бұрын
Hnn I had a dought on you
@PreMath
@PreMath 2 күн бұрын
Excellent! Thanks for sharing ❤️
@imetroangola17
@imetroangola17 3 күн бұрын
Solução: sen α = 2x/24 e tg α = 3x/24 cos α = sen α/tg α =2/3. Como sen² α + cos² α =1, então: (2x/24)² + (2/3)² = 1 (x/12)² = 1 - 4/9 = 5/9 x/12 = √5/3. Portanto, x = 4√5. Assim, cos α = 2/3 = CD/24 → CD = 16. A área S amarela é dada por: S = 3x. 24/2 + 2x. 16/2 S = 36x + 16x = 52x S = 52 × 4√5 *S = 208√5 unidades quadradas.*
@PreMath
@PreMath 2 күн бұрын
Excellent! Thanks for sharing ❤️
@marioalb9726
@marioalb9726 2 күн бұрын
Both right triangles are similar cosα = b/24= 2x/3x = 2/3 b = 16 cm ; sinα = √5/3 A₁= ½absinα= ½.24.16.√5/3= 64√5 cm² A₂= A₁/cos²α= 64√5/(2/3)²= 144√5 cm² A= A₁+ A₂ = 208√5 cm² ( Solved √ )
@PreMath
@PreMath 2 күн бұрын
Excellent! Thanks for sharing ❤️
@jonathanburros6762
@jonathanburros6762 3 күн бұрын
Since angle with measure a is in both right triangles sin a = (3X)/[sqrt([ 9 X^2 +24^2)] = (2 X)/24 Solve for X DC =sqrt( 24^2 -24^2) The sum of the areas equals (1/2)(3 X)(24) + (1/2)(2 X)DC
@PreMath
@PreMath 2 күн бұрын
Thanks for the feedback ❤️
@santiagoarosam430
@santiagoarosam430 3 күн бұрын
Razón de semejanza entre ABC y BDC, s=2/3→ s²=4/9→ 24*3x*4/9=DC*2x→ DC=16→ (2x)²=24²-16²→ x=4√5→ Área ABDC =(3*4√5*24/2)*[1+(4/9)] =208√5 u². Gracias y un saludo cordial.
@PreMath
@PreMath 2 күн бұрын
Excellent! Thanks for sharing ❤️
@relens2
@relens2 Күн бұрын
Since they are similar, and the ratio of the smaller to the larger is ⅔, the area of the smaller triangle will be (⅔)^2 or 4/9 of the larger. So the total area will be 13/9 the area of the larger. After solving for x as you did, one need only calc the area of the larger and multiply it by 13/9 - no need to solve for y. Yay!
@sergioaiex3966
@sergioaiex3966 3 күн бұрын
Solution: Let's label AC = a and CD = b The Triangles ABC and BCD are similar, so we have proportions a/24 = 24/b ab = 576 ... ¹ a/3x = 24/2x a = 3x . 24/2x a = 36 Replacing in Equation ¹ 36 . b = 576 b = 16 Applying Pythagorean Theorem in Triangle BCD to calculate "x" (2x)² + (16)² = (24)² 4x² + 256 = 576 4x² = 320 x² = 80 x = 4√5 AB = 3x = 3 . (4√5) AB = 12√5 BD = 2x = 2 . (4√5) BD = 8√5 Once again, we'll applying Pythagorean Theorem in Triangle BCD to calculate "b" (8√5)² + b² = (24)² 320 + b² = 576 b² = 256 b = 16 Yellow Shaded Area = (½ 12√5 . 24) + (½ 8√5 . 16) Yellow Shaded Area = 144√5 + 64√5 Yellow Shaded Area = 208√5 Square Units ✅ Yellow Shaded Area ≈ 465,1021 Square Units ✅
@PreMath
@PreMath 2 күн бұрын
Excellent! Thanks for sharing ❤️
@murdock5537
@murdock5537 3 күн бұрын
φ = 30° → sin⁡(3φ) = 1; BCA = δ = DCB; AB = 3x; BD = 2x; BC = 24 sin⁡(ABC) = sin⁡(BDC) = 1; sin⁡(δ) = 2x/24 = 3x/√(24^2 - 4x^2) → x = 4√5 → tan⁡(δ) = √5/2 → sin⁡(δ) = √5/3 → cos⁡(δ) = 2/3 → CD = 16 → AC = 36 → area ABDC = (1/2)sin⁡(δ)(16(24) + 24(36)) = 12sin⁡(δ)52 = 208√5 or: φ = 30° → sin⁡(3φ) = 1; AC = AE + CE → sin⁡(CEB) = 1 → CE = CD → BE = BD = 2x BCA = δ → BAB = θ = 3φ - δ → ABE = δ → sin⁡(δ) = x/12 cos⁡(δ) = 2/3 → sin⁡(δ) = √5/3 = x/12 → x = 4√5 → 3x = 12√5 → CD = 16 → AC = 36 → AE = 20 → 2x = 8√5 → area ABDC = 32x + 20x = 208√5 btw: AC = AE + CE → sin⁡(CEB) = 1 → ABE = BCE = δ → cos⁡(δ) = 2x/3x = 2/3 → sin⁡(δ) = √5/3 = x/12 → x = 4√5 → tan⁡(δ) = √5/2 → tan^2(δ) = 5/4 = area ∆ABE/∆BCE = P/Q → 5Q = 4P → P = 5Q/4 = Qtan^2(δ) → area ABDC = 2Q + 5Q/4 = 13Q/4 = (13/4)16x = 208√5
@PreMath
@PreMath 2 күн бұрын
Excellent! Thanks for sharing ❤️
@spiderjump
@spiderjump 3 күн бұрын
CD/2x= 24/3x CD= 16 (2x)^2 + 16^2 = 24^2 x= square root of 80 areas of the 2 triangles can calculated .
@PreMath
@PreMath 2 күн бұрын
Thanks for the feedback ❤️
@blogfilmes1134
@blogfilmes1134 3 күн бұрын
Fiz por sen e tg
@wackojacko3962
@wackojacko3962 3 күн бұрын
I choke on math exams. ...so for study group before an exam always ask what is gonna be the easiest problem on the exam and what is gonna be the hardest problem on the exam cuz I'm gonna overthink both and get em wrong. ...So if this is misinformation please delete my comment. I'm thinking AC=36. am I close? 🤞
@PreMath
@PreMath 2 күн бұрын
😀 Thanks for sharing ❤️
@LuisdeBritoCamacho
@LuisdeBritoCamacho 3 күн бұрын
STEP-BY-STEP-RESOLUTION PROPOSAL : Statement : Triangle [ABC] similar to Triangle [BCD] 01) Let DC = Y 02) 3X / 24 = 2X / Y ; X / 8 = 2X / Y ; Y = 16 lin un 03) DC = 16 lin un 04) 2X / 16 = 3X / 24 ; 2X / 3X = 16 / 24 ; 2 / 3 = 16 / 24 ; (2 * 24) = (3 * 16) ; 48 = 48 - True !! 05) Let AC = Z 06) 24 / 2X = Z / 3X ; 12 / X = Z / 3X ; Z = 36 lin un 07) AC = 36 lin un 08) Linear Ratio (R) = 3 / 2 or R = 1,5 09) Let's find X value!! 10) (24^2 - 16^2) = (2X)^2 ; 320 = 4X^2 ; 320 ; X^2 = 320 / 4 ; X^2 = 80 ; X = sqrt(80) ; X = 4*sqrt(5) lin un Or; 11) (36^2 - 24^2) = (3X)^2 ; 720 = 9X^2 ; X^2 = 80 ; X = sqrt(80) ; X = 4*sqrt(5) lin un 12) 3X = 12*sqrt(5) and 2X = 8*sqrt(5) 13) A(1) = (8*sqrt(5) * 16) / 2 ; A(1) = 64*sqrt(5) sq un ; A(1) ~ 143 sq un 14) A(2) = (12*sqrt(5)) * 24 / 2 ; A(2) = 144*sqrt(5) sq un ; A(2) ~ 322 sq un 15) R = 1.5 => R^2 = 2,25 16) 143 * R^2 ~ 322 ; 143 * 2,25 ~ 322 - True !! 17) Yellow Shade Area (YSA) = A(1) + A(2) ; YSA = (143 + 322) ; YSA = 465 sq un So, after all this Tedius Algebra; OUR BEST ANSWER IS : Yellow Shaded Area is approx. equal to 465 Square Units. Exact Form = (144 + 64)*sqrt(5) Square Units = 208*sqrt(5) Square Units. Best Regards from Al - Andalus; Al - Ushbuna !!
@PreMath
@PreMath 2 күн бұрын
Excellent! Thanks for sharing ❤️🙏
@nicholastoop7635
@nicholastoop7635 2 күн бұрын
3z/24 = 2x/CD so CD=16 4x² = 24²-16² = 8×40 so x²=80 area of triangles= ½72x + ½32x = 52x area = 52×sqrt(80} =208sqrr(5)
@LuisdeBritoCamacho
@LuisdeBritoCamacho 2 күн бұрын
@@nicholastoop7635 Thanks for sharing.
Support each other🤝
00:31
ISSEI / いっせい
Рет қаралды 81 МЛН
IL'HAN - Qalqam | Official Music Video
03:17
Ilhan Ihsanov
Рет қаралды 700 М.
So Cute 🥰 who is better?
00:15
dednahype
Рет қаралды 19 МЛН
7 Outside The Box Puzzles
12:16
MindYourDecisions
Рет қаралды 85 М.
The BLUE Area is 11: What's The Area of The RED Right Triangle?
8:07
The Phantom of the Math
Рет қаралды 3,8 М.
Brazil l Nice Olympiad Math Radical Problem l find value of a?
9:01
Math Master TV
Рет қаралды 413 М.
Oxford Admission Test - Find the value of x
10:39
Math Queen
Рет қаралды 635 М.
Can you crack this beautiful equation? - University exam question
18:39
From Raw Wood to Masterpiece: The Magic of Woodturning
20:40
Wood Craft
Рет қаралды 452 М.
Why You Can't Bring Checkerboards to Math Exams
21:45
Wrath of Math
Рет қаралды 448 М.