Can you find area of the Green shaded region? | (Circles) |

  Рет қаралды 18,276

PreMath

PreMath

Күн бұрын

Пікірлер: 53
@jamestalbott4499
@jamestalbott4499 22 күн бұрын
That was an adventure! Thank you!
@PreMath
@PreMath 22 күн бұрын
I'm glad you enjoyed the journey! 😊 You are very welcome! Thanks for the feedback ❤️
@adept7474
@adept7474 22 күн бұрын
Intersecting chords property: AT•TB=CT•TD. 2R•2r=50•50. R•r=625.
@PreMath
@PreMath 22 күн бұрын
Thanks for the feedback ❤️
@allanflippin2453
@allanflippin2453 22 күн бұрын
Yes, I used this as well. An advantage of this approach is one doesn't need to assume any particular size relationship between R and r.
@neilcourse
@neilcourse 22 күн бұрын
There's an easier way. Since the answer doesn't depend on TP, you might as well assume that TP=0. Then the big circle has a radius of 50 and the two white circles each have a radius of 25.
@thewolfdoctor761
@thewolfdoctor761 22 күн бұрын
Yes, just make the circles the same size, tangent at the center of the big circle, and the problem is solved easily.
@PreMath
@PreMath 22 күн бұрын
Thanks for the feedback ❤️
@rchandos
@rchandos 21 күн бұрын
Always helpful to try and construct the figure given in these puzzles before embarking on complicated calculations. When you do in this case, it becomes clear that the two smaller circles can be of equal radii.
@అధునాతన_సనాతని
@అధునాతన_సనాతని 13 күн бұрын
Exactly 💯
@marioalb9726
@marioalb9726 22 күн бұрын
Shaded area value doesn't depend on circle radius We can match both inner circles, and all original conditions are still being fulfilled. Therefore, R=2r, R=50cm and r=25cm A = πR² - 2πr² = π(R² - 2r²) A = π (50² - 2*25²) A = 1250π cm² ( Solved √ )
@alanthayer8797
@alanthayer8797 22 күн бұрын
Cool break down ! I like these type of Problems which is finding Area of spherical curvatures! Thanks as usual sir !
@PreMath
@PreMath 22 күн бұрын
Glad you liked it! 🙏 You are very welcome! Thanks for the feedback ❤️
@marcelowanderleycorreia8876
@marcelowanderleycorreia8876 22 күн бұрын
Very smart question!! Congrats teacher!! 👏👏👍👍
@PreMath
@PreMath 22 күн бұрын
Thanks for the encouragement! ❤️🙏
@manuelantoniobahamondesa.3252
@manuelantoniobahamondesa.3252 8 күн бұрын
Muy bueno profesor; Muchas Gracias!
@jackwhite5255
@jackwhite5255 22 күн бұрын
Very nice, but as a conclusion it must be emphasized that the result doesn't depend on the position of the T point (between C and D as limits ) . An animated displacement would be very interesting. The easiest calculation is for the position in P.
@PreMath
@PreMath 22 күн бұрын
Thanks for the feedback ❤️
@GilmerJohn
@GilmerJohn 22 күн бұрын
Since the only information given was the 100 units it's likely that so long as every thing fits, it's possible that the two inner circles are the same size. If that's the case, each inner is 1/4th of the big circle. The green area is 1/2 (50^2)xpi.
@manochao
@manochao 16 күн бұрын
MAGNIFIQUE Thank you
@himo3485
@himo3485 22 күн бұрын
CO=OT=x TQ=QD=y CP=PD=z AT=TB=50 50*50=2x*2y 4xy=2500 xy=625 (2x+2y)/2=z 2(x+y)/2=z x+y=z (x+y)²=x²+2xy+y²=z² Green shaded area = z²π - y²π - x²π = x²π + 2xyπ + y²π - y²π -x²π = 1250π
@shrawankumarmishra3528
@shrawankumarmishra3528 11 күн бұрын
Nice sir please provide some other topic video
@marioalb9726
@marioalb9726 22 күн бұрын
A= ½(¼πc²) = ⅛π100² A = 1250π cm² ( Solved √ ) Shaded area is equal to half of the circular ring area, respect to the chord tangent to the equivalent inner circle. This chord is same chord that separates both given internal circles. ( given data c= 100 cm)
@marioalb9726
@marioalb9726 22 күн бұрын
Formula to calculate the area of a circular ring A = πR² - πr² A = π (R²-r²) A = π (½c)² A = ¼.π.c² where 'c' is the chord
@PreMath
@PreMath 22 күн бұрын
Thanks for the feedback ❤️
@PreMath
@PreMath 22 күн бұрын
Excellent! Thanks for sharing ❤️
@andrepiotrowski5668
@andrepiotrowski5668 19 күн бұрын
Pythagoras ad nauseam. There are also other theorems, such as Thales' theorem and the altitude theorem (or intersecting chords theorem, even simpler). It follows immediately: 2r * 2R = 50^2
@marcgriselhubert3915
@marcgriselhubert3915 21 күн бұрын
Fine;
@yakovspivak962
@yakovspivak962 19 күн бұрын
R = r1 + r2 is an outer circle radius. 50^2 = 4(r1 × r2) - geometric mean 50^2 = (r1 + r2)^2 - (r1 - r2)^2 Or: r1+ r2 = 50 and r1 - r2 = 0 r1 = 25, r2 = 25 S = 1250 × pi
@quigonkenny
@quigonkenny 22 күн бұрын
Let a be the radius of circle O, b the radius of circle Q, and r the radius of circle P. The shaded area will be equal to the area of circle P minus the areas of circles O and Q. A = πr² - (πa²+πb²) A = π(r²-(a²+b²)) --- [1] As circles O and Q are tangent to each other and to circle P, then their center points and points of tangency are collinear, so O, T, P, and Q are on CD. As AB is tangent to circles O and Q at T, then AB is perpendicular to CD, and as CD is a diameter of circle P, then T is the midpoint of AB. AT = TB = 100/2 = 50. By the intersecting chords theorem, AT(TB) = CT(TD). AT(TB) = CT(TD) 50(50) = (2a)(2b) 2500 = 4ab ab = 2500/4 = 625 --- [2] CD = CT + TD 2r = 2a + 2b r = a + b r² = (a+b)² r² = a² + b² + 2ab r² = a² + b² + 2(625) r² = a² + b² + 1250 a² + b² = r² - 1250 --- [3] A = π(r²-(a²+b²)) A = π(r³-(r²-1250)) A = π(r²-r²+1250) A = 1250π ≈ 3926.99 sq units
@PreMath
@PreMath 22 күн бұрын
Excellent! Thanks for sharing ❤️
@wackojacko3962
@wackojacko3962 22 күн бұрын
Another reason why the 'red and green should never be seen' rule should be left behind. Why are barns painted red? ... green pastures! Complementary colors! In this case the red line and green area gives the problem a vibrant look! Happy Holidays 😊
@PreMath
@PreMath 22 күн бұрын
Happy Holidays 😊 Thanks for sharing ❤️
@unknownidentity2846
@unknownidentity2846 22 күн бұрын
Let's find the area: . .. ... .... ..... All three circles have exactly one intersection point in pairs. Therefore we know that the centers of all these circles are located on the same line (CD). We also know that AB is a tangent to the smaller and the bigger white circle. From this we can conclude that AB is perpendicular to CD. This also means that the common intersection point (T) is the midpoint of AB. Now we can apply the intersecting secants theorem. With R₁>R₂>R₃ being the radii of the circles we obtain: AT*BT = CT*DT (AB/2)*(AB/2) = (2R₂)*(2R₃) AB²/4 = 4R₂R₃ ⇒ 2R₂R₃ = AB²/8 = 100²/8 = 10000/8 = 1250 Now we are able to calculate the area of the green region: A(green) = π(R₁)² − π(R₂)² − π(R₃)² = π[(R₁)² − (R₂)² − (R₃)²] = π[(R₂ + R₃)² − (R₂)² − (R₃)²] = π[(R₂)² + 2R₂R₃ + (R₃)² − (R₂)² − (R₃)²] = π*2R₂R₃ = 1250π Best regards from Germany
@PreMath
@PreMath 22 күн бұрын
Excellent! Thanks for sharing ❤️
@donfzic7471
@donfzic7471 21 күн бұрын
Thank you. Is it possible to specify also the values of r and R ?
@maroonshaded
@maroonshaded 22 күн бұрын
So if b = length of AB, a general expression for the shaded area could be πb^2/8.
@cyruschang1904
@cyruschang1904 22 күн бұрын
r is the small white circle radius, R is the large green circle radius R - r = the radius of the larger white circle 50^2 + (R - 2r)^2 = R^2 50^2 + 4r^2 - 4rR = 0 r(R - r) = 25^2 Green area = π[R^2 - r^2 - (R - r)^2] = π[2rR - 2r^2] = π(2)(25)(25) = (50)(25) = 1250π
@giuseppemalaguti435
@giuseppemalaguti435 22 күн бұрын
Agreen=π(R+r)^2-πR^2-πr^2=2πrR...(R+r)^2-(2R-r-R)=50^2...(2R)(2r)=2500...rR=625=>Agreen=2π625=π1250
@PreMath
@PreMath 22 күн бұрын
Excellent! Thanks for sharing ❤️
@iosifbitenskiy2479
@iosifbitenskiy2479 22 күн бұрын
2nd way. Let consider a triangle CBD inscribed into a big circle. One side of the triangle is a diameter CD, therefore the angle CBD=90°. Let diameters of the circles be a = 2r, b = 2R, CD = d. In the right angle triangle CBD CD² = CB² + BD² (1) From the right angle triangles CBT and TBD: CB² = CT² + TB² or CB² = a² + 50², and BD² = TD² + TB² or BD² = b² + 50². Inserting into (1) d² = a² + 50² + b² + 50² or d² - a² - b² = 5000. Multiplying both sides by π/4 one gets the shaded area on the left equal 1250π on the right.
@PreMath
@PreMath 22 күн бұрын
Excellent! Thanks for sharing ❤️
@LuisdeBritoCamacho
@LuisdeBritoCamacho 21 күн бұрын
Here it goes my Resolution Proposal : 01) Let Small Circle (SC) Radius = A 02) Let Medium Circle (MC) Radius = B 03) Let Big Circle (BC) Radius = R 04) A < B < R 05) CD = (DT + CT) ; 2R = (2B + 2A) ; 2R = 2(A + B) ; R = (A + B) ; B = (R - A) or A = (R - B) 06) 2A * 2B = 50 * 50 ; 4 * A * B = 2.500 ; A * B = 2.500 / 4 ; A * B = 625 07) So far : (A + B) = R and A * B = 625 08) Proving that 2A = B 09) OQ = (A + B) 10) As : (A + B) = R ; Thus : OQ = R ; PC = R ; TP = A + B - 2A ; TP = (B - A) 11) PQ = TQ - TP ; PQ = B - (B - A) ; PQ = B - B + A ; PQ = A ; A + (B -A) = B ; B = B ; wich is a True Statment. 12) One must conclude that : B - A = A and B = 2A 13) As : (A * B) = 625 and B = 2A ; (A * 2A) = 625 ; 2A^2 = 625 ; A^2 = (625/2) 14) As : (A * B) = 625 and A = B / 2 ; (B * B / 2) = 625 ; B^2 / 2 = 625 ; B^2 = 1.250 15) R = (A + B) ; R^2 = (A + B)^2 ; R^2 = (625 / 2 + 1.250 + 1.250) ; R^2 = 625 / 2 + 2.500 ; R^2 = (625 + 5.000) / 2 ; R^2 = (5.625/2) 16) BCA = (5.625 * Pi / 2) 17) MCA = (1.250 * Pi) 18) SCA = (625 * Pi / 2) 19) GSA = BCA - (MCA + SCA) 20) GSA = 5.625Pi/2 - (1.250Pi + 625Pi/2) 21) GSA = (5.625Pi/2) - (3.125Pi/2) 22) GSA = 2.500Pi/2 23) GSA = 1.250Pi/2 Thus, OUR BEST SOLUTION IS : Green Shaded Area equals 1.250Pi Square Units. NOTE : Sorry about the Delay!!
@imetroangola17
@imetroangola17 22 күн бұрын
*Solução:* Seja k o raio da circunferência maior. Quando as cordas são perpendiculares, vale a relação: AT² + TB² + TD² + TC² = (2k)² Como T é ponto médio do segmento AB, logo TB=AT= 50. Daí, 50² + 50² + (2r)² + (2R)² = (2k)² 5000 + 4r² + 4R² = 4k² × (π/4) 1250π + πr² + πR² = πk² πk² - (πr² + πR²) = 1250π Portanto, a área procurada é: *1250π unidades quadradas.*
@zawatsky
@zawatsky 22 күн бұрын
Выходит, что оставшаяся площадь точно равняется двум кругам, вырезанным повдоль разделителя (с диаметрами по 50 см), или же одному большому вырезанному кругу радиусом в 100 см. Странное свойство, интуитивно непонятное...🙄
@nenetstree914
@nenetstree914 22 күн бұрын
1250PI
@PreMath
@PreMath 22 күн бұрын
Excellent! Thanks for sharing ❤️
@sergioaiex3966
@sergioaiex3966 22 күн бұрын
Solution: Big Circle Radius = r Medium Circle Radius = a Small Circle Radius = b Green Shaded Area (GSA) = πr² - πa² - πb² GSA = πr² - πa² - πb² ... ¹ d = 2a + 2b d = 2 (a + b) 2r = 2 (a + b) r = a + b ... ² AT² + PT² = AP² ... ³ PT = PC - CT PT = a + b - 2b PT = a - b AP = r = a + b (50)² + (a - b)² = (a + b)² 2500 + a² - 2ab + b² = a² + 2ab + b² 2500 - 2ab = 2ab 4ab = 2500 ab = 625 ... ⁴ Big Circle Area = πr² = = π (a + b)² Medium Circle Area = π a² Small Circle Area = π b² Replacing in Equation ¹ GSA = π (a + b)² - πa² - πb² GSA = π (a² + 2ab + b²) - πa² - πb² GSA = πa² + 2πab + πb² - πa² - πb² GSA = 2πab GSA = 2π × 625 GSA = 1,250 π Square Units ✅ GSA ≈ 3,926.9908 Square Units ✅
@7777yo7777
@7777yo7777 22 күн бұрын
50x50= 2r x 2R
@PreMath
@PreMath 22 күн бұрын
Thanks for the feedback ❤️
@EPaozi
@EPaozi 21 күн бұрын
Faire simple ! R=r !!!! (rien ne l'interdit , donc c'est autorisé) alors aire verte = pi.50^2-2pi.25^2 = pi1250 !!!!! 😄
@k9slayer
@k9slayer 22 күн бұрын
I need to eat some brain food, lots of it. Thanks once again.
@PreMath
@PreMath 22 күн бұрын
You can do it! You are very welcome! Thanks for the feedback ❤️
7 Outside The Box Puzzles
12:16
MindYourDecisions
Рет қаралды 164 М.
$1 vs $500,000 Plane Ticket!
12:20
MrBeast
Рет қаралды 122 МЛН
Andro, ELMAN, TONI, MONA - Зари (Official Music Video)
2:50
RAAVA MUSIC
Рет қаралды 2 МЛН
"Идеальное" преступление
0:39
Кик Брейнс
Рет қаралды 1,4 МЛН
Japanese l can you solve this?? l Olympiad Mathematics
16:36
Math Master TV
Рет қаралды 31 М.
Find the area of the circle | Sweden Math Olympiad Geometry Problem
15:51
Fun Blue Semicircle
4:00
Andy Math
Рет қаралды 436 М.
Circle Theorems - GCSE Higher Maths
13:53
1st Class Maths
Рет қаралды 588 М.