excellent problem put y^2 = x+12 in given equation we get y +12 = x^2 hence x^2-y = y^2-x (x-y ) (x+y+1) = 0 if y = x then x^2 - x-12 = 0 x= 4 , -3 if y = -x-1 then x^2+x-11 = 0 x = (-1 + √ 45)/2 , (-1 - √ 45)/2 Rest follows at once
@raghvendrasingh1289Ай бұрын
(x^2 - 12)^2 = x+ 12 subtracting x^2 both sides and factorising LHS (x^2-12+x) ( x^2 -12 -x) = x+12-x^2 transposing RHS term to LHS and taking common ( x^2-x-12) (x^2+x - 11) = 0 (x+3) (x-4)x^2+x-11) = 0
@benyasir423Ай бұрын
je n'ai pas vérifié les étapes de la solution, mais ce que j'ai remarqué, avec tous mes respects, il y a manque d'élégance surtout avec ces verifications qu'il était possible de les éviter. 1) déterminer le domaine de résolution de l'équation. Ici x doit être supérieur ou égal à - 12 et supérieur ou égal à 0 . On a donc x doit être positif, ceci exclut les valeurs négatives éventuelles de x 2. Au cours des transformations d'autres conditions pourraient apparaitre telle que: sqrt( x + m ) = x^2 - m. ceci impose à x^2 - m >=0 et x >= 0 donc x >= sqrt( m=12 ). Ceci, suivant les solutions obtenues. x1, x2 et x4 sont exclues car inférieures à sqrt(12). Seul x4 =4 est retenu. Merci.
we get , x^4-24x^2-x+132=0 , --> , (x+3)(x^3-3x^2-15x+44)=0 , x= -3 , x^3-3x^2-15x+44=0 , --> , (x-4)(x^2+x-11)=0 , x=4 , x^2+x-11=0 , x= (-1+V45)/2 , (-1-V45)/2 , test , x= -3 < 0 , not a solu , x=4 , V(12+V(12+4))=V(12+4) , V16=4 , OK , solu , x=4 ,
@ericmariaud8237Ай бұрын
Make it simpler: √( 12 + √(12+x) ) = x x > 0 √(12+x) = x² - 12 x² - 12 > 0 and x > 0 x > 2√3 12 + x = ( x² - 12 )² x > 2√3 Let : 12 + x = x² x² - 12 = x Substitution: 12 + x = ( x² - 12 )² x² = ( x )² solution: 12 + x = x² x > 2√3 x² - x - 12 = 0 (x - 4)(x + 3) = 0 x = -3 and x > 2√3 false x = 4 and x > 2√3 ok More: 12 + x = ( x² - 12 )² x > 2√3 x⁴ - 24x² - x + 132 = 0 x > 2√3 ( x⁴ - 24x² - x + 132 )/(x - 4)/(x + 3) ( x⁴ - 24x² - x + 132 )/( x² - x - 12 ) = x² + x - 11 ( x² + x - 11 )(x - 4)(x + 3) = 0 x > 2√3 Solutions to check: ( x² + x - 11 ) = 0 x > 2√3 x = (-1 - 3√5 )/2 and x > 2√3 x = - 3,85 and x > 3,46 false x = (-1 + 3√5 )/2 and x > 2√3 x = 2,85 and x > 3,46 false Only solution: x = 4
@9허공11 күн бұрын
Your method is too complicated. For real solution, x ≥ 0 and x ≥ √(12 + √12) => x ≥ √(12 + √12) ---(*) let y = √(12 + x) then y^2 = 12 + x ---(1) x = √(12 + y) => x^2 = 12 + y ---(2) (1) - (2) => y^2 - x^2 = x - y => (y + x)(y - x) + (y - x) = (y - x)(y + x + 1) = 0 case 1 y - x = 0 from (2) x^2 = 12 + x => x^2 - x - 12 = (x - 4)(x + 3) = 0 => x = {4, -3} from domain definition of x in (*), x = 4 case 2 y + x + 1 = 0 from (2) x^2 = 12 - x - 1 => x^2 + x - 11 = 0 => x = { (-1 ± √45)/2 } two solutions are not in the domain of x in (*)
@superacademy24711 күн бұрын
I'm glad you found a more elegant way to solve the problem! 💯🙏Thanks for your alternative approach! 🔥🔥🔥