Is it really Oxford test ? Easily can be resolved in brain...I would use 10, not 4, for the basis...😂
@hakim4230Сағат бұрын
7th grade students will do that: k*k*k - k*k = 100 >>> k^2 (k-1) = 100 >>> (k-1) =100 / k^2 👉 (k-1) is an integer >>> 100 divisible by (k^2) >>> (k^2) = 2 4 5 10 20 25 50 😁 👉 (k^2) is the square number >>> k^2 = 25 >>> k = 5 😁 Very simply 👍
@jmvh59Сағат бұрын
Once I got 2^16*15, I turned that into 2^10 (1024) times 2^5*3 (32*3, 96 or 100-4) times 2*5 (10) and all that multiplication became a fairly easy subtraction problem. (102,400-4096)*10 98,304*10
@oahuhawaii2141Сағат бұрын
There's no domain restriction on p, q, and r. 2^p + 2^q + 2^r = 42 , p < q < r Let p = 0 and q = 1 . 2⁰ + 2¹ + 2ʳ = 42 2ʳ = 39 r = log₂(39) One of an infinite number of solutions: p = 0 , q = 1 , r = log(39)/log(2) ≈ 5.2854022188622... Alternate solution: 42 = 2Ah = 101010b = 2¹ + 2³ + 2⁵ p = 1 , q = 3 , r = 5
@ТигрМудрыйСағат бұрын
3051.873195268761708828
@ManojkantSamal2 сағат бұрын
X= log 5/{log (3+*5)- log 2} or X=log 5/{ log (3-*5)-log 2}..... May be *= read as to the power ^=read as square root As per question 25^(1/*x)+125^(1/*x)=625^(1/*x) 5^(2/*x)+5^(3/*x)=5^(4/*x) Let 5^(1/*x)=R So, R^2+R^3=R^4 R^2(1+R)=R^4 1+R=R^4/R^2 1+R=R^2 R^2-R-1=0 Here a=1,b=-1, c=-1 D=b^2- 4ac =(-1)^2-(4×1×-1) =1+4=5 *D=*5 R=(-b±*D)/2a ={-(-1)±*5}/(2×1) =(1±*5)/2 R^2=(1+5+2*.*5)/4 or (1+5-2.*5)/4 R^2=(6+2.*5)/4 or (6-2.*5)/4 =2(3+*5)/4 or 2(3-*5)/4 =(3+*5)/2 or (3-*5)/2 Again R^2={5^(1/*x)}^2 =[5^{(1/x)^(1/2)}^2 =5^(1/x) So, 5^(1/x)=(3+*5)/2 Take the log log {5^(1/x)}=log{(3+*5)/2} (1/x). log 5 =log(3+*5) - log 2 (1/x)={log(3+*5)-log2 }/log 5 X=log 5/{log(3+*5) -log2 } Similarly Taking the log we'll get X=log 5/{log(3-*5) - log2 }
@ianprior93442 сағат бұрын
It took him nearly ten minutes, to do what took me a minute by simply multiplying 4 in my head followed by a simple subtraction.
A Douglas Adams "Hitch Hikers" guide to the Galaxy reference. The computer gives the answer "42" to the question "life, the universe, and everything". Given computers today use binary, the question assumes binary is still used, and asks the question, How would the computer represent 42 ?
@nikolayplatnov51484 сағат бұрын
Oxford admission to what ? To the "course of equity and verieties " 😂😂😂
@DanielBergerBS6 сағат бұрын
Question: At 6:40 you say +2+27 is 25. Isn't it 29? Thanks for helping.
@superacademy2476 сағат бұрын
It's a toungue slide 😋
@farancient6 сағат бұрын
x-y = 2, x = 2 + y 2^(2+y) - 2 ^y = 4 2^y * (2^2 - 1) = 4 2^y = 4/3 y = (log 4-log3) / log2 = 0.4150 X = 2.4150
@davidseed29397 сағат бұрын
method.. assume m is an integer.. find the value of m such that 5^m is the lowest value greater than the answer. powers of 5 are 5,25,125,625… so try m=4. 5^4=625 3^4=81 subtracting gives 544 so m=4 is the answer. 1:57 method given is just a different way of getting this by assuming that (aa-bb)(aa+bb) will give an answer which it does (25-9)(25+9)=16*34=544
@superacademy2476 сағат бұрын
Thanks for sharing your perspective and insightful calculation💯🤩🤗🙏
Great video, Super Academy. Looking forward to seeing your next upload from you. I smashed the thumbs up button on your content. Keep up the fantastic work! Your breakdown of the quadratic equations was really clear. Could you elaborate on how you approach factoring in more complex scenarios?
@superacademy2476 сағат бұрын
Thanks and sure. I'll work on factoring tough math questions 💡🥰😎😋😋💯
@遠傳五華8 сағат бұрын
It's a factoring quiz & we may solve it from RHS. 42=2*3*7=2*(2^2-1)*(2^3-1) =(2^3-2)*(2^3-1) =2^6-3*2^3+2 =2^6-(2^2-1)*2^3+2 =2^6-2^5+2^3+2 =2^5(2-1)+2^3+2 =2^5+2^3+2
@EC4U2C_Studioz9 сағат бұрын
I don't think you needed to use the power rule for logs as it’s implied from canceling the base with the log of the same base leaving with whatever is in the exponent on one side of the equation.
@hafeezrehman86929 сағат бұрын
Nice 👍
@superacademy2478 сағат бұрын
Thanks for the appreciation! 😊💕I'm glad you enjoyed it! 💯😁
Bạn có mỏi tay lúc viết những số như:10,000,000,000,000. Tôi đề nghị thay thế bằng 13 (13 số 10) góc trên trái và góc trên phải của 13 là 10 nhỏ. (10) 13 (10) Ví dụ khác: 1,111,111,111 là (1) 10 (1). Đây mới là ý tưởng giảm thiểu thời giờ và tăng sự chính xác về Số quá dài. 😂😂
@hunghuynh484611 сағат бұрын
Ý tưởng 2: 1,000,000,000. Là 10------> (phía trên mũi tên ------> là 0) 11,111,111 là 1------> ( phía trên --------> là 8)
@superacademy2478 сағат бұрын
Thanks for sharing your in-depth ideas!💯💕✅💪🥰😎
@에스피-z2g12 сағат бұрын
Solution by insight 2^p+2^q+2^r=42 Among 2,4,8,16,32 2+8+32=42 The only possible combination. p=1, q=3,r=5
@superacademy24712 сағат бұрын
Thanks for sharing your insight 💯💕✅💪
@shannonhgau743112 сағат бұрын
Waste time
@key_board_x14 сағат бұрын
(1/x) + √[(x + 1)/x] = 5 → where: x ≠ 0 (1/x) + √[1 + (1/x)] = 5 → let: a = 1/x a + √(1 + a) = 5 → where: a > - 1 √(1 + a) = 5 - a [√(1 + a)]² = (5 - a)² 1 + a = 25 - 10a + a² a² - 11a + 24 = 0 Δ = (- 11)² - (4 * 24) = 121 - 96 = 25 a = (11 ± 5)/2 a = 8 → x = 1/8 a = 3 → x = 1/3 Frirst case: x = 1/8 → let's check = (1/x) + √[(x + 1)/x] → when: x = 1/8 = (1/{1/8}) + √[({1/8} + 1)/{1/8}] = 8 + √[({1/8} + {8/8})/{1/8}] = 8 + √[(9/8)/{1/8}] = 8 + √9 = 8 + 3 = 11 → x = 1/8 is not a solution Second case: x = 1/3 → let's check = (1/x) + √[(x + 1)/x] → when: x = 1/3 = (1/{1/3}) + √[({1/3} + 1)/{1/3}] = 3 + √[({1/3} + {3/3})/{1/8}] = 3 + √[(4/3)/{1/3}] = 3 + √4 = 3 + 2 = 5 → x = 1/3 is a solution
@TonyFisher-lo8hh14 сағат бұрын
The primary school pencil-and-paper square root method is much quicker and always gives the result.
@superacademy24712 сағат бұрын
That's a great alternative method! 💯Thanks for sharing your perspective! 🙏
@matheusivanmedinaramirez77215 сағат бұрын
A can't understand the step on 4:28, explain me please!
@superacademy2478 сағат бұрын
It's based on completing the square method in which we take half the coefficient of the middle term then we square it. Hope this explanation helps💪✅💕💯🤗🤩
@saltydog58417 сағат бұрын
Just write it as a binary number. 32=10101 then convert back to base 10. 10101=32 + 8 + 2 = 2^5 + 2^3+2^1so P is 5, Q is 3 and r =1 (only works when P,Q&R are whole numbers)
@michaelwang546417 сағат бұрын
You didn’t simplify anything, just a not easy way to calculate the numbers. While the original problem is also kind of stupid!
@ibrahimbakr878817 сағат бұрын
This solution is getting difficult for this easy problem.....))
@prime42318 сағат бұрын
No one is going to ask this question!!Its about the SAT or ACT.
@tomtke735118 сағат бұрын
a very unique case who's solution has NO UNIVERSAL APPLICATION...
answer in two steps 1/8^1/8 = 2^(-3)^2^(-3)= (2)^-3*1/8= (2)^-3/8
@GregMoress20 сағат бұрын
The first and last terms reduce to 1, and the middle term reduces to -1. -1 ** 7= -1.
@kareolaussen81920 сағат бұрын
This is a question of finding the binary representation of 42. Take r>q>p and define r to be the largest number for which 2^r ≤ 42. Subtract and repeat the procedure for the remainder (here 10) until the remainder is zero. Here we find 42 = 32 + 8 + 2 = 2^5 + 2^3 + 2^1. I.e, r, q, p = 5, 3, 1 or a permutation thereof.
@jproudil275821 сағат бұрын
Another way si to try to think with binary Numbers. The solution has to be written as 1 + x1 x 2 + x2 x 4 + x3 x 8 +…. If you make the calculus you can see that the first xi (up to 24) will be zéro and the next ones will be 1 up to i equal 48. In the end 1 + 2^25 + 2^26 +••• + 2^48 equal 1 + 2^49 - 2^25
@deryakuru654821 сағат бұрын
Square root of 9 =minus -3 and +3 isnt it? So if we take X=equal to minus 3 ,it verifies the equation
@peterhein6321 сағат бұрын
If you write 42 in binary, you get 101010 and immediately the unique solution. I think that was what the test expected.
@walterwen297522 сағат бұрын
Harvard University Admission Interview Tricks: 1/x + √[(x + 1)/x] = 5; x =? 1 > x > 0; 1/x + √[(x + 1)/x] = 1/x + 1 + √[(x + 1)/x] = 5 + 1 (x + 1)/x + √[(x + 1)/x] = 6, Let: y = √[(x + 1)/x]; y > 0 (x + 1)/x + √[(x + 1)/x] = y² + y = 6, y² + y - 6 (y - 2)(y + 3) = 0, y > 0, y + 3 > 0 y - 2 = 0, y = 2 = √[(x + 1)/x], (x + 1)/x = 2² = 4, 4x = x + 1; x = 1/3 Answer check: x = 1/3, 1/x = 3: 1/x + √[(x + 1)/x] = 3 + √[3(1/3 + 1)] = 3 + 2 = 5; Confirmed Final answer: x = 1/3
@davidseed293923 сағат бұрын
you didnt need the W function. in the middle of that you found 2^5+5=37 and since x and 2^x are monotonic increasing functions and thrhs is constant. there is only one solution so x=5
Minus one half, by inspection. The turgid explanation goes off the rails at 4:28, but a pile of obscure errors around 6:44 result in the correct answer by accident. There is no planet in this Universe where two is the natural log of four, but it's close enough to get there.
@justjacqueline2004Күн бұрын
How long was the time for this question?
@TheDavidlloydjonesКүн бұрын
This is all incorrect. The eighth root of anything is the square root of the square root of the square root. Here that comes down to 1/(2^.5) or half of the root of two, i.e. roughly 0.71.
@hamdamoveraliКүн бұрын
My solution is way easier (it took less than a minute): 1) I rewrote the equation as 1/x+sqrt(1/x+1)=5. 2) Then, I added 1 to both sides of the equation 1/x+1+sqrt(1/x+1)=6. 3) Then, by simply substituting t=sqrt(1/x+1), we get a simple quadratic equation of t^2+t-6=0. The solution of which are -3 and 2. 4) When we plug in the value of sqrt(1/x+1)=-3 has no real solutions ( by the way, if it did not violate the laws of mathematics, the answer choice of 1/8 would be correct). 5) sqrt(1/x+1)=2 1/x+1=4 x=1/3
@superacademy24722 сағат бұрын
That's a great simplification! 👍Thanks for sharing your clever solution! 🤩