I've been fascinated by inequalities lately, they are powerful!
@ProfOmarMath4 жыл бұрын
It's true 😃
@wesleydeng714 жыл бұрын
Nice, Cauchy Schwarz is quite useful in math competitions. The trick is to find a way to properly utilize it as shown in the video.
@ProfOmarMath4 жыл бұрын
Agreed 😃
@grahamcorke92762 жыл бұрын
This just so inspiring! Hope budding mathematicians are watching! Great video
@Playguu3 жыл бұрын
Thank you for once again saving me from overthinking these sorts of problems!
@ProfOmarMath3 жыл бұрын
Definitely!
@yousuf_w12 жыл бұрын
Thanks sir for the video Right now l am a seventh grader I was in IMO math team for iraq this year Unfortunately iraq is out of the IMO this year But I will be there for next year and get a medal 🏅
@ProfOmarMath2 жыл бұрын
Just saw this. This was wonderful ❤️
@yousuf_w12 жыл бұрын
@@ProfOmarMath 🌺 thanks sir
@spyromania12 жыл бұрын
Man, You have a great Teaching level, thnks.
@ProfOmarMath2 жыл бұрын
Thanks Spyromania!
@route66math774 жыл бұрын
Classic result; thanks for sharing!
@ProfOmarMath4 жыл бұрын
Needed to have it in the mix haha
@route66math774 жыл бұрын
@@ProfOmarMath And so nicely presented as well -- such a treat, Prof!
@蔡小宣-l8e2 жыл бұрын
Thank you Dr. Mohamed Omar ! 谢谢!
@tonyha88883 жыл бұрын
Thanks for the great proof and examples!
@rishavmondal80454 жыл бұрын
Sir very nice solution . Thank you .
@ProfOmarMath4 жыл бұрын
Definitely Rishav
@amateursoundz62623 жыл бұрын
Thanks! I am studying for a University of Maryland math contest and this is really useful!
@ProfOmarMath3 жыл бұрын
Fantastic!
@jaycee9153 Жыл бұрын
In the final step at 9:20, shouldn't the numerator of the lower-bound be (ab+bc+ac)^2?
@HorsyPotter2 жыл бұрын
Sir, 4:28 why are you writing y=2x , z=3x as if it is equal ? Please I wanna know. By which condition you hooked it just being parallel to 1,2,3. Please consider if there's some grammatical error. 🙏
@ahduiiiiiiiii2 жыл бұрын
Since it was parallel
@eyupaydn88712 жыл бұрын
Good day, teacher. I would appreciate it if you explain how we make the transition from exponential numbers to radical numbers.
@allenhirahara2242 Жыл бұрын
Thank you for the help!
@youngmathematician91543 жыл бұрын
Amazing !
@ProfOmarMath3 жыл бұрын
Thanks!!
@rounaksinha53094 жыл бұрын
Again sir a nice one!
@ProfOmarMath4 жыл бұрын
Thank you for watching!
@mathmadeeasyph26334 жыл бұрын
Thank you sir. You made this inequality easy to he explained
@ProfOmarMath4 жыл бұрын
Definitely
@atharvagarwal64122 жыл бұрын
Extremely helpful sir 🙏
@ProfOmarMath2 жыл бұрын
Thanks Atharv!
@chemsonbro73254 жыл бұрын
Sir I haven’t understood completely,can u give a prerequisite for this please
@ProfOmarMath4 жыл бұрын
I think learning about vectors is the key
@giulioverzeletti5133 жыл бұрын
Thanks for the video
@ProfOmarMath3 жыл бұрын
Definitely!
@einbatixx48743 жыл бұрын
Wonderful video
@ProfOmarMath3 жыл бұрын
Thanks!
@tgx35294 жыл бұрын
In (IMO 1995 ) I also tried to take c=1/ab, then we have ((ab)a/(ab)b+1) +((ab)b/((ab)a+1) +1/((ab)(a+b)) , where a, b>0. Let (ab)a=k;(ab)b=l, then we calculate minimum for k/(l+1) +l/(k+1) + 1/(k+l) where k,l >0. If I take partial derivative, there is minimum for k=l . Minumum of function f(k)=2k/(k+1) +1/(2k) is for k=1. If k=l=1, then a=b=c=1. So we have thet minimum is 3/2.
@ProfOmarMath4 жыл бұрын
I like this analytic approach. I think you get a local min if you check by second derivative test but then an argument is needed to show the local min is a global min
@yaseengharehmohammadloo99554 жыл бұрын
very important and useful inequality. thanks a lot
@ProfOmarMath4 жыл бұрын
Definitely!
@Anuragmishra20810 ай бұрын
Love from india❤
@chemsonbro73254 жыл бұрын
Sir I’m not so good at sigma notation problems , in ur channel is there any videos on that
@ProfOmarMath4 жыл бұрын
I would look up "sigma notation" on KZbin for more!
@ProfOmarMath4 жыл бұрын
If you email me I can send you some info on it 😁
@chemsonbro73254 жыл бұрын
@@ProfOmarMath sir can u send the Gmail address , I need a help , today I wrote the math Olympiad and I was not able to do any question , and realised that I was learning math in wrong way plz help me sir 😭🙏
@ProfOmarMath4 жыл бұрын
@@chemsonbro7325 Hi. All my info is at www.mohamedomar.org Check out the videos on my problem solving playlist too!
@chemsonbro73254 жыл бұрын
@@ProfOmarMath I have filled the my details on availability page , by when will I get a mail from u or ur team
@deepjyoti56104 жыл бұрын
Thnqqqq vry much . I want to understsnd it 1 year ago but unable.to coz of my 8th grade teacher says its not for kids. thnqqq
@ProfOmarMath4 жыл бұрын
Now it's here!
@philipcho2313 жыл бұрын
04:12 Here how do get to the conclusion that vector v and u have to be parallel for x+2y+3z to be sqrt 14? I have completel understanding of vectors and I am learning Calc 3 so feel free to explain using vectors.
@ProfOmarMath3 жыл бұрын
Ah yes. The Cauchy Schwarz inequality says the dot product of two vectors is bounded above by the product of their lengths and that equality holds if and only if they are parallel. This happens because the dot product equals the product of their lengths times the cosine of the angle between them, and that is maximized when the angle is 0 or 180 (the latter because we actually take the absolute value of the dot product)
@pythontron87102 жыл бұрын
Your notation at the end is a bit sloppy, since it appears that you’re applying the AM-GM mean inequality to (ab + ac + bc) / 2 instead of (ab + ac + bc) / 3 separately to find a minimum of the numerator. Good vid otherwise 👍
@creatingwithkeenan68623 жыл бұрын
Quick question at kzbin.info/www/bejne/kILQaaSjhtR-pdU how we do drop the length of the v vector? Oh wait never mind as I was typing this i realized that the length of the v vector is equal to 1...
@thetechdude69512 жыл бұрын
then it would be better to delete this post 😁😁. or you could've done that at that time
@БогданДейнека-д3з Жыл бұрын
This is the Cauchy-Bunyakovskiy inequality, maybe you are right to call it "-Schwartz", but Bunyakovskiy - this is the name to remember when you talk about that inequality
@camerontorrance1992 Жыл бұрын
Does Bunyakovsky's arguement work for a generic inner product space? The wording on wiki page makes sound like Schwartz's argument works in the general case, if true this might explain the current name of the inequality.
@БогданДейнека-д3з Жыл бұрын
@@camerontorrance1992 just the thing to remember from school) I'll figure it out, I'll reply then