even after 5 years this video is a masterpiece regarding the clearness of this proof. with no english background in mathematics it was still so easy to understand. thank you a lot.
@MarkJay7 жыл бұрын
"What is love?" -Dr. Peyam
@shaunderoza23217 жыл бұрын
The one dislike must from someone who saw the words "discriminant" and "inequality" and got offended.
@StreuB16 жыл бұрын
BEST COMMENT EVER!! LOL No time for snowflakes in mathematics. We've all business here.
@forklift17125 жыл бұрын
probably from people who can't appreciate Dr. Peyam's enthusiasm
@letladisebesho45035 жыл бұрын
This is an excellent, clear proof. Now I finally get it. Thank you 🙏🏽
@duckymomo79356 жыл бұрын
In France, it’s called Cauchy inequality In Germany, it’s Schwarz inequality In Russia, it’s just inequality 😂 LOL
@drpeyam6 жыл бұрын
😂😂😂
@syahimiafiq59145 жыл бұрын
Well Russian called it Bunyakovsky inequality
@jamesclerkmaxwell6765 жыл бұрын
Syahimi Afiq cauchy was his doctoral advisor. My two cents
@alexeybekasov42985 жыл бұрын
Actually, Bunyakovsky published it 25 years earlier than Schwarz.. ;)
@joshuafreeman95324 жыл бұрын
Nope in France its Cauchy-Schwarz
@vukstojiljkovic71816 жыл бұрын
I love this proof dude! I was confused with the proof that they presented to me on the university, but this one, i love it. Keep making math videos, maybe i will join you in the near future!
@jamesclerkmaxwell6765 жыл бұрын
"it's better than watching TV " 😂 I love you Prof. Tough crowd
@rubentuquerrez7 жыл бұрын
I'v neve liked the proyections proof, but I love this one. I discover this by myself while I was studying for an exam. This was awesome. Thanks for the video Dr Peyam!
@datboi_wild12226 жыл бұрын
Still dont get it. Im teaching myself quantum physics and im learning linear algebra in order to do that but i cant seem to understand this. Im in 8th grade btw. Dumb it down.
@nilsdula76935 жыл бұрын
You need to let your brain time to develop.
@thedoublehelix56613 жыл бұрын
@@datboi_wild1222 did you figure it out now?
@datboi_wild12223 жыл бұрын
@@thedoublehelix5661 lol, ya
@tlhomotsemoteme24235 жыл бұрын
I am writing in 5 hrs and I needed you to boost my confidence. Thank you.
@drpeyam5 жыл бұрын
Good luck!!!
@afifakimih88235 жыл бұрын
I'm a regular viewer of Dr. Peyam...his derivation methods are always unique.!!
@randywilton34663 жыл бұрын
This is an amazing proof! Way easier to understand than the one my real analysis prof gave us. Thank you
@mokouf34 жыл бұрын
The camera man is actually blackpenredpen!
@StreamsofEdification3 жыл бұрын
Aggredd
@jeanlucas28343 ай бұрын
I recognized instantly
@chessislife34296 жыл бұрын
Wow!! You get so many people that have same interest and passion as you, so fortunate
@RealEverythingComputers4 ай бұрын
At 1:40 when you show the summation of the dot product, do you mean i in superscript or subscript because its done in superscript in the video which confuses me with an exponent. Your clarification will be much appreciated. thx
@drandrewsanchez7 жыл бұрын
Great work! I love the way you speak!
@emanuellandeholm56572 жыл бұрын
As far as I can find out, Cauchy-Schwarz seems to hold for, not just real inner product spaces, and not just complex inner product spaces, but for all vector spaces! Please correct me if I'm uneducated! :)
@lamequemaciel64123 жыл бұрын
Hey, professor! I was search the proof of Schwarz inequality for the context of Quantum Mechanics, mean that we can to use the complex space. But, I appreciate your proof.
@abratumwe3 жыл бұрын
07:08 I didn't understand that part, we also have quadratic curves with positive answers only 🤔😕 What if the polynomial of t is only positive?
@abratumwe3 жыл бұрын
You meant negative in y?
@richardjamieson75484 жыл бұрын
In step i of the proof t is defined to be an element of the Real Numbers. In the final step of the proof the the discriminant is said to be negative. That implies t is a complex number. Contradiction? Rik
@sdmartens227 жыл бұрын
Very impressive video as always, i wish you would do some damage on more advanced topics; the world needs you there.
@stevenbi74953 жыл бұрын
Watching this before Linear Algebra Final!!! Absolutely love this proof!!
@ayushdudhani5 жыл бұрын
But sometimes after taking square roots inequality sign changes doesn't it??
@drpeyam5 жыл бұрын
No, things are positive here
@ayushdudhani5 жыл бұрын
@@drpeyam not getting can u explain it in detail
@bluemonk94802 жыл бұрын
I don't understand why the proof suddenly decides to look towards the discriminant. It makes sense to use it since it guarantees that b^2 - 4ac
@josephinell3144 ай бұрын
Such an elegant proof! Thank you for sharing.
@Loathepotion7 жыл бұрын
This was good-you kinda didn't address the part where you wrote out a piece (cut off for some reason)but good stuff.
@arjunnarasimhan80272 жыл бұрын
What was your thought process behind Step 1? How did you get (u+tv)(u+tv)?
@pheasant139 Жыл бұрын
Very elegant proof. Easy to understand. Thank you!
@loganreina22907 жыл бұрын
We were JUST proving this for homework in my honors calc class for our homework! Neat!
@TruongNguyen-pl9cd4 жыл бұрын
why can u use the disciminant ? and why it have to be less then 0
@drpeyam4 жыл бұрын
That’s the magical part about the proof. And it’s negative because otherwise there would be 2 roots, so at least somewhere the function would be negative
@TruongNguyen-pl9cd4 жыл бұрын
@@drpeyam okay but how can I explain in my proof ? We just can use the discriminant ? Same like we use root and so on ?
@drpeyam4 жыл бұрын
If you want do a contradiction. You have a quadratic function in t, and if the discriminant is positive then you would have 2 roots, which gives a contradiction etc
@NabeelMustafaSMM6 жыл бұрын
please make video on Minkowski inequality ..I really missed that
@RealEverythingComputers4 ай бұрын
Great video! That was a really darn good proof!
@fellipetoffolo42263 жыл бұрын
very nice, but wouldn't the complex values of t contradict something? Or its okay because (u+tv)(u+tv) is the norm of something, thus will be real anyway?
@drpeyam3 жыл бұрын
This proof is for real spaces only
@fellipetoffolo42263 жыл бұрын
ok, thank you Dr
@sandnstars86 жыл бұрын
Thanks for explaining the notation! It helped a lot!
@drandrewsanchez7 жыл бұрын
I have a question. By listing the three inequalities regarding the descriminant, aren't you fixing the vectors in R2. Would this proof still be valid for vectors in R3 or RN?
@TheRedfire217 жыл бұрын
yes since you are only working on the real plane; modulus of u and v are real numbers, the dot product of u.v are real numbers, and t is an scalar.
@drpeyam7 жыл бұрын
SanCHEneering It's valid in all of R^n :) The polynomial is quadratic, but the vectors u and v are in R^n
@leonardromano14917 жыл бұрын
Do they need to explicitly be in R^n? Wouldn't it be sufficient to be on a real-scalar-product-space?
@drpeyam7 жыл бұрын
That's correct, it works on any real inner product space!
@avdrago71706 жыл бұрын
A way that I thought to prove this inequality when looking at the thumbnail is that with the the angle between two vectors x, cos(x)=|u * v|/(||u||||v||). So, |u*v|= cos(x)||u|| ||v||. Now, |cos(x)| is always less than or equal to 1, so when you multiply it to a separate quantity, you are scaling that quantity such that it is less than or equal to its original value. So, in the end, |u*v| is less than or equal to ||u|| ||v||
@drpeyam6 жыл бұрын
Your method only works in R^n, unfortunately
@avdrago71706 жыл бұрын
Dr. Peyam's Show ? How does this matter
@aliyss6 жыл бұрын
@@avdrago7170 --> I think Dr. Peyam's Show meant R^2.
@minyhailabera36164 жыл бұрын
the proof was short and understandable way.Thanks a lot.
@starfire86793 жыл бұрын
Really great video!! ❤And your great personality makes everything so interesting and fun 👌
@lLl-fl7rv6 жыл бұрын
Thanks a lot man!! You saved my life one day before my final exam xD
@railgun.__.70555 жыл бұрын
Luckily we do not have to prove it in high school. (It was a question in AL Pure Maths)
@LegendOfMurray7 жыл бұрын
great proof, Dr. Peyam!
@TheRedfire217 жыл бұрын
hi peynam could you proof this by definition of the dot product? or does it restrict your proof? ex: |u.v| = (by definition) ||u|| ||v|| cos@ ≤ (since cos@ is between 0 and 1) ||u|| ||v||
@drpeyam7 жыл бұрын
Sebastian Cor Your proof is correct, but only works in R^2; this proof is valid for more general dot products!
@leonardromano14917 жыл бұрын
Actually the angle is defined through the Cauchy-Schwarz-Inequality so you can't define it the other way around. ( |uv|≤||u|| ||v|| -> -1≤uv/(||u|| ||v||) ≤ 1 and -1≤cos(phi)≤1 so there exists an open set U where for all phi in U cos(phi)=uv/(||u|| ||v||) ) The Proof only works for real Dotproducts because complex ones also conjugate the left vector.
@tmogoreanu7 жыл бұрын
Can you please make a video with Newton-Leibniz formula proof?
@drpeyam7 жыл бұрын
Anatolie Mogoreanu The proof of the product rule? I think you've read my mind, because it's coming on Friday :)
@tmogoreanu7 жыл бұрын
Actually I meant the definite integral calculation formula F(b)-F(a)
@drpeyam7 жыл бұрын
Ooooh, the FTC!!! It's on my to-do list :P
@tmogoreanu7 жыл бұрын
Great! Thanks in advance)
@sunbreezy39355 жыл бұрын
Thank you very much. This is an excellent clear proof. Is there any chance that you could also do a proof of the Minkowski inequality.
@fardinzaman9045 жыл бұрын
Thank you very much . Absolutely clear and easy . You saved me
@mathunt11303 жыл бұрын
You can reduce the proof to a line using geometric algebra.
@drpeyam3 жыл бұрын
How?
@mathunt11303 жыл бұрын
@@drpeyam Simply take two vectors U and V and examine the product (UV)(VU) and expand using the geometric product. In a few simple steps (on one line) you get |U|^2|V|^2=(U.V)^2+|UxV|^2>= (U.V)^{2}
@joudy57674 жыл бұрын
Can’t thank you enough!! Excellent proof :)
@Zhinoi Жыл бұрын
This is a really nice and neat proof
@danieledwin89273 жыл бұрын
If you want to prove it for two real numbers are you allowed to say the numbers are just vectors with one component? If not make a video with the proof for the case for two numbers, preferrably from the axioms
@drpeyam3 жыл бұрын
For real numbers the statement is trivial, it becomes |ab|
@sweetychaudhary2772 жыл бұрын
thanks 😊 your video help me a lot to understand this proof ☺️
@kenmeyer1005 жыл бұрын
Wow, someone who actually pronounces both names correctly
@favoriteflavor466 ай бұрын
camera man just watches like others in that room.
@DavidPumpernickel3 жыл бұрын
dank, this works for non-euclidean metrics, too
@syahimiafiq59145 жыл бұрын
I've show my cat this proof Now she still a cat
@gabrielnegrini888910 ай бұрын
amazing explanation
@alimghazzawi37004 жыл бұрын
At first glims i thought of course it’s smaller or equal because the dot product value equals the multiplication of the brooms times cos theta and cos theta its biggest value 1 and smallest value is-1 but i dont know of course there is a reason why this isn’t a valid proof i don’t understand high level algebra i am an engineer student.
@michaelsohnen65267 жыл бұрын
why not start a proof from the fact that "A dot B = ||A|| ||B|| cos(theta)" ?
@michaelsohnen65267 жыл бұрын
we know -1
@drpeyam7 жыл бұрын
No, this only works in R2; my proof works in Rn and more!
@michaelsohnen65267 жыл бұрын
Dr. Peyam's Show thanks!
@luizr.83167 жыл бұрын
Divertido e fantástico! Parabéns pelo trabalho!
@MathematicsMadeSimple12 жыл бұрын
Good presentation!
@aryammlg68335 жыл бұрын
Great proof, but it would be even better if u had gone over the equality case and shown that it only happens when one is a scalar multiple of the other 👍💕💕
@ndriqa5 жыл бұрын
Thank you!!! Great channel ❤️
@boydmwansa875011 ай бұрын
Very nice proof indeed so easy to understand
@varungoyal47326 жыл бұрын
thanks alot Dr Peyam. this video helped me alot.
@vijay853217 ай бұрын
I got a little but happy to see the proof!
@pibeeulotro96035 жыл бұрын
Beautiful proof, thanks.
@stevekaszycki86295 жыл бұрын
neat proof! and it comes with at least two bad puns.
@mokoepa3 жыл бұрын
This is beautiful... Perfection...
@abstractalien123455 жыл бұрын
Thank you so much! Greetings from Chicago :)
@drpeyam5 жыл бұрын
The city of Lou Malnati’s 😋😋😋
@PervezAli1127 жыл бұрын
sir its awesome proof
@MrJapogm7 жыл бұрын
This channel is also very cool
@jennifera.32088 ай бұрын
very good explanation :)
@malicksoumare3707 жыл бұрын
amazing! The other proofs are just incomprehensible
@mihlalimjacu69842 жыл бұрын
thank you sir this is so much clear☺
@joshuafreeman95324 жыл бұрын
absolute genius
@OmarOmar-cj9rk5 жыл бұрын
هل تتكلم اللغة العربية؟
@joudy57674 жыл бұрын
نعم
@OmarOmar-cj9rk4 жыл бұрын
لقد مضى على هذا التعليق عام، وها أنت ذا يا joudy تستمتع بمشاهدة هذا المقطع الممتع. وفقك الله وسهل لك طريقا تلتمس فيه علما نافعا.
That's a great proof and all but what in god's name motivated that initial formula to begin with? This is what makes people think math is so inaccessible. Once you come up with that formula, everything else is just algebra, but no insight is given into the intuition or meaning behind the original key formula.
@drpeyam7 жыл бұрын
It's actually extremely useful in Analysis and Partial Differential Equations when you want to estimate the product of two things! Basically, think of it as follows: For a function f, let ||f|| = the square root of the integral of (f(x))^2, which you can think of as the 'energy' of f. Similarly we can define the energy of g, and finally define f . g = integral of f(x) g(x), which you can think of as the 'interaction' between f and g. Now suppose that f and g have finite energies, that is ||f|| < oo and ||g|| < oo, then the C-S inequality says that |f.g|
@vecter7 жыл бұрын
Thanks for that lengthy reply! I wasn't talking about the CS inequality itself which is immensely useful, I'm talking about the formula you introduce at 3:00. That is a black magic equation from which the proof magically falls out. What is the motivation or intuition behind the starting point of this proof?
@drpeyam7 жыл бұрын
Oh, I see! I agree, I did kinda pull it out of my hat, which makes the proof magical :P But I guess the intuition is that you want some inequality involving u and v, and that formula provides us with a good starting point!
@vecter7 жыл бұрын
Surely there must be some geometric intuition behind it also? I'll think more about it, but the intuition you just mentioned isn't really much of an answer tbh. I feel like the key ideas behind proofs always have some intuition behind them, which is what originally drove the person who dicovered that proof.
@0x80557 жыл бұрын
it dare saying it comes from phisics as dr peyam stated. im my engeneering classes as good as 15yrs ago i remember thinking something like "thats obvious, u always lose some energy on the interaction". so as phisics is a good client for math its good to have vectors abeying cs inequality.
@inthebackwiththerabbish4 жыл бұрын
8:12 baby don't hurt me
@azizketata32412 жыл бұрын
i like your energy .
@witthawasphanthawimol55343 жыл бұрын
Thank you very much😊
@hazza69156 жыл бұрын
Thinking about the square root step. x^2=y^2 doesn’t necessarily imply x=y