In France, it’s called Cauchy inequality In Germany, it’s Schwarz inequality In Russia, it’s just inequality 😂 LOL
@drpeyam6 жыл бұрын
😂😂😂
@syahimiafiq59145 жыл бұрын
Well Russian called it Bunyakovsky inequality
@jamesclerkmaxwell6765 жыл бұрын
Syahimi Afiq cauchy was his doctoral advisor. My two cents
@alexeybekasov42985 жыл бұрын
Actually, Bunyakovsky published it 25 years earlier than Schwarz.. ;)
@joshuafreeman95324 жыл бұрын
Nope in France its Cauchy-Schwarz
@cipicm2 жыл бұрын
even after 5 years this video is a masterpiece regarding the clearness of this proof. with no english background in mathematics it was still so easy to understand. thank you a lot.
@shaunderoza23217 жыл бұрын
The one dislike must from someone who saw the words "discriminant" and "inequality" and got offended.
@StreuB15 жыл бұрын
BEST COMMENT EVER!! LOL No time for snowflakes in mathematics. We've all business here.
@forklift17124 жыл бұрын
probably from people who can't appreciate Dr. Peyam's enthusiasm
@MarkJay7 жыл бұрын
"What is love?" -Dr. Peyam
@letladisebesho45035 жыл бұрын
This is an excellent, clear proof. Now I finally get it. Thank you 🙏🏽
@jamesclerkmaxwell6765 жыл бұрын
"it's better than watching TV " 😂 I love you Prof. Tough crowd
@mokouf34 жыл бұрын
The camera man is actually blackpenredpen!
@StreamsofEdification3 жыл бұрын
Aggredd
@jeanlucas2834Ай бұрын
I recognized instantly
@afifakimih88235 жыл бұрын
I'm a regular viewer of Dr. Peyam...his derivation methods are always unique.!!
@rubentuquerrez7 жыл бұрын
I'v neve liked the proyections proof, but I love this one. I discover this by myself while I was studying for an exam. This was awesome. Thanks for the video Dr Peyam!
@datboi_wild12225 жыл бұрын
Still dont get it. Im teaching myself quantum physics and im learning linear algebra in order to do that but i cant seem to understand this. Im in 8th grade btw. Dumb it down.
@nilsdula76935 жыл бұрын
You need to let your brain time to develop.
@thedoublehelix56613 жыл бұрын
@@datboi_wild1222 did you figure it out now?
@datboi_wild12223 жыл бұрын
@@thedoublehelix5661 lol, ya
@tlhomotsemoteme24235 жыл бұрын
I am writing in 5 hrs and I needed you to boost my confidence. Thank you.
@drpeyam5 жыл бұрын
Good luck!!!
@vukstojiljkovic71815 жыл бұрын
I love this proof dude! I was confused with the proof that they presented to me on the university, but this one, i love it. Keep making math videos, maybe i will join you in the near future!
@randywilton34663 жыл бұрын
This is an amazing proof! Way easier to understand than the one my real analysis prof gave us. Thank you
@chessislife34296 жыл бұрын
Wow!! You get so many people that have same interest and passion as you, so fortunate
@stevenbi74953 жыл бұрын
Watching this before Linear Algebra Final!!! Absolutely love this proof!!
@josephinell3142 ай бұрын
Such an elegant proof! Thank you for sharing.
@drandrewsanchez7 жыл бұрын
Great work! I love the way you speak!
@pheasant139 Жыл бұрын
Very elegant proof. Easy to understand. Thank you!
@lamequemaciel64123 жыл бұрын
Hey, professor! I was search the proof of Schwarz inequality for the context of Quantum Mechanics, mean that we can to use the complex space. But, I appreciate your proof.
@loganreina22907 жыл бұрын
We were JUST proving this for homework in my honors calc class for our homework! Neat!
@minyhailabera36164 жыл бұрын
the proof was short and understandable way.Thanks a lot.
@sandnstars85 жыл бұрын
Thanks for explaining the notation! It helped a lot!
@RealEverythingComputers2 ай бұрын
Great video! That was a really darn good proof!
@joudy57674 жыл бұрын
Can’t thank you enough!! Excellent proof :)
@fardinzaman9045 жыл бұрын
Thank you very much . Absolutely clear and easy . You saved me
@RealEverythingComputers2 ай бұрын
At 1:40 when you show the summation of the dot product, do you mean i in superscript or subscript because its done in superscript in the video which confuses me with an exponent. Your clarification will be much appreciated. thx
@lLl-fl7rv6 жыл бұрын
Thanks a lot man!! You saved my life one day before my final exam xD
@sdmartens227 жыл бұрын
Very impressive video as always, i wish you would do some damage on more advanced topics; the world needs you there.
@syahimiafiq59145 жыл бұрын
I've show my cat this proof Now she still a cat
@emanuellandeholm56572 жыл бұрын
As far as I can find out, Cauchy-Schwarz seems to hold for, not just real inner product spaces, and not just complex inner product spaces, but for all vector spaces! Please correct me if I'm uneducated! :)
@richardjamieson75484 жыл бұрын
In step i of the proof t is defined to be an element of the Real Numbers. In the final step of the proof the the discriminant is said to be negative. That implies t is a complex number. Contradiction? Rik
@mokoepa2 жыл бұрын
This is beautiful... Perfection...
@Loathepotion7 жыл бұрын
This was good-you kinda didn't address the part where you wrote out a piece (cut off for some reason)but good stuff.
@LegendOfMurray7 жыл бұрын
great proof, Dr. Peyam!
@sweetychaudhary2772 жыл бұрын
thanks 😊 your video help me a lot to understand this proof ☺️
@gabrielnegrini88899 ай бұрын
amazing explanation
@Zhinoi Жыл бұрын
This is a really nice and neat proof
@TheRedfire217 жыл бұрын
hi peynam could you proof this by definition of the dot product? or does it restrict your proof? ex: |u.v| = (by definition) ||u|| ||v|| cos@ ≤ (since cos@ is between 0 and 1) ||u|| ||v||
@drpeyam7 жыл бұрын
Sebastian Cor Your proof is correct, but only works in R^2; this proof is valid for more general dot products!
@leonardromano14917 жыл бұрын
Actually the angle is defined through the Cauchy-Schwarz-Inequality so you can't define it the other way around. ( |uv|≤||u|| ||v|| -> -1≤uv/(||u|| ||v||) ≤ 1 and -1≤cos(phi)≤1 so there exists an open set U where for all phi in U cos(phi)=uv/(||u|| ||v||) ) The Proof only works for real Dotproducts because complex ones also conjugate the left vector.
@arjunnarasimhan80272 жыл бұрын
What was your thought process behind Step 1? How did you get (u+tv)(u+tv)?
@luizr.83167 жыл бұрын
Divertido e fantástico! Parabéns pelo trabalho!
@avdrago71706 жыл бұрын
A way that I thought to prove this inequality when looking at the thumbnail is that with the the angle between two vectors x, cos(x)=|u * v|/(||u||||v||). So, |u*v|= cos(x)||u|| ||v||. Now, |cos(x)| is always less than or equal to 1, so when you multiply it to a separate quantity, you are scaling that quantity such that it is less than or equal to its original value. So, in the end, |u*v| is less than or equal to ||u|| ||v||
@drpeyam6 жыл бұрын
Your method only works in R^n, unfortunately
@avdrago71706 жыл бұрын
Dr. Peyam's Show ? How does this matter
@aliyss6 жыл бұрын
@@avdrago7170 --> I think Dr. Peyam's Show meant R^2.
@starfire86793 жыл бұрын
Really great video!! ❤And your great personality makes everything so interesting and fun 👌
@abratumwe3 жыл бұрын
07:08 I didn't understand that part, we also have quadratic curves with positive answers only 🤔😕 What if the polynomial of t is only positive?
@abratumwe3 жыл бұрын
You meant negative in y?
@varungoyal47326 жыл бұрын
thanks alot Dr Peyam. this video helped me alot.
@boydmwansa87509 ай бұрын
Very nice proof indeed so easy to understand
@pibeeulotro96035 жыл бұрын
Beautiful proof, thanks.
@vijay853216 ай бұрын
I got a little but happy to see the proof!
@drandrewsanchez7 жыл бұрын
I have a question. By listing the three inequalities regarding the descriminant, aren't you fixing the vectors in R2. Would this proof still be valid for vectors in R3 or RN?
@TheRedfire217 жыл бұрын
yes since you are only working on the real plane; modulus of u and v are real numbers, the dot product of u.v are real numbers, and t is an scalar.
@drpeyam7 жыл бұрын
SanCHEneering It's valid in all of R^n :) The polynomial is quadratic, but the vectors u and v are in R^n
@leonardromano14917 жыл бұрын
Do they need to explicitly be in R^n? Wouldn't it be sufficient to be on a real-scalar-product-space?
@drpeyam7 жыл бұрын
That's correct, it works on any real inner product space!
@ndriqa5 жыл бұрын
Thank you!!! Great channel ❤️
@DavidPumpernickel3 жыл бұрын
dank, this works for non-euclidean metrics, too
@mihlalimjacu69842 жыл бұрын
thank you sir this is so much clear☺
@joshuafreeman95324 жыл бұрын
absolute genius
@fellipetoffolo42263 жыл бұрын
very nice, but wouldn't the complex values of t contradict something? Or its okay because (u+tv)(u+tv) is the norm of something, thus will be real anyway?
@drpeyam3 жыл бұрын
This proof is for real spaces only
@fellipetoffolo42263 жыл бұрын
ok, thank you Dr
@jennifera.32087 ай бұрын
very good explanation :)
@railgun.__.70555 жыл бұрын
Luckily we do not have to prove it in high school. (It was a question in AL Pure Maths)
@tmogoreanu7 жыл бұрын
Can you please make a video with Newton-Leibniz formula proof?
@drpeyam7 жыл бұрын
Anatolie Mogoreanu The proof of the product rule? I think you've read my mind, because it's coming on Friday :)
@tmogoreanu7 жыл бұрын
Actually I meant the definite integral calculation formula F(b)-F(a)
@drpeyam7 жыл бұрын
Ooooh, the FTC!!! It's on my to-do list :P
@tmogoreanu7 жыл бұрын
Great! Thanks in advance)
@abstractalien123455 жыл бұрын
Thank you so much! Greetings from Chicago :)
@drpeyam5 жыл бұрын
The city of Lou Malnati’s 😋😋😋
@witthawasphanthawimol55343 жыл бұрын
Thank you very much😊
@ayushdudhani5 жыл бұрын
But sometimes after taking square roots inequality sign changes doesn't it??
@drpeyam5 жыл бұрын
No, things are positive here
@ayushdudhani5 жыл бұрын
@@drpeyam not getting can u explain it in detail
@andreaLA2223 жыл бұрын
Thanks for the video!
@MrJapogm7 жыл бұрын
This channel is also very cool
@sunbreezy39355 жыл бұрын
Thank you very much. This is an excellent clear proof. Is there any chance that you could also do a proof of the Minkowski inequality.
@NabeelMustafaSMM6 жыл бұрын
please make video on Minkowski inequality ..I really missed that
@ronoguern3 жыл бұрын
You are great! Thanks!
@stevekaszycki86295 жыл бұрын
neat proof! and it comes with at least two bad puns.
@bluemonk9480 Жыл бұрын
I don't understand why the proof suddenly decides to look towards the discriminant. It makes sense to use it since it guarantees that b^2 - 4ac
@MathematicsMadeSimple12 жыл бұрын
Good presentation!
@ketara1234od3 жыл бұрын
THANK YOU !
@inthebackwiththerabbish4 жыл бұрын
8:12 baby don't hurt me
@mathunt11303 жыл бұрын
You can reduce the proof to a line using geometric algebra.
@drpeyam3 жыл бұрын
How?
@mathunt11303 жыл бұрын
@@drpeyam Simply take two vectors U and V and examine the product (UV)(VU) and expand using the geometric product. In a few simple steps (on one line) you get |U|^2|V|^2=(U.V)^2+|UxV|^2>= (U.V)^{2}
@azizketata32412 жыл бұрын
i like your energy .
@kenmeyer1005 жыл бұрын
Wow, someone who actually pronounces both names correctly
@TruongNguyen-pl9cd4 жыл бұрын
why can u use the disciminant ? and why it have to be less then 0
@drpeyam4 жыл бұрын
That’s the magical part about the proof. And it’s negative because otherwise there would be 2 roots, so at least somewhere the function would be negative
@TruongNguyen-pl9cd4 жыл бұрын
@@drpeyam okay but how can I explain in my proof ? We just can use the discriminant ? Same like we use root and so on ?
@drpeyam4 жыл бұрын
If you want do a contradiction. You have a quadratic function in t, and if the discriminant is positive then you would have 2 roots, which gives a contradiction etc
@PervezAli1126 жыл бұрын
sir its awesome proof
@malicksoumare3707 жыл бұрын
amazing! The other proofs are just incomprehensible
@martinsaidi13033 жыл бұрын
neatly done, heyy!!
@aryammlg68334 жыл бұрын
Great proof, but it would be even better if u had gone over the equality case and shown that it only happens when one is a scalar multiple of the other 👍💕💕
@NabeelMustafaSMM6 жыл бұрын
excellent way
@souverain1er4 жыл бұрын
Very nice
@rasikajayathilaka35164 жыл бұрын
He was very good!
@favoriteflavor464 ай бұрын
camera man just watches like others in that room.
@danieledwin89273 жыл бұрын
If you want to prove it for two real numbers are you allowed to say the numbers are just vectors with one component? If not make a video with the proof for the case for two numbers, preferrably from the axioms
@drpeyam3 жыл бұрын
For real numbers the statement is trivial, it becomes |ab|
@chelangatedwin61123 жыл бұрын
👍👍👍 your the best
@michaelsohnen65267 жыл бұрын
why not start a proof from the fact that "A dot B = ||A|| ||B|| cos(theta)" ?
@michaelsohnen65267 жыл бұрын
we know -1
@drpeyam7 жыл бұрын
No, this only works in R2; my proof works in Rn and more!
@michaelsohnen65267 жыл бұрын
Dr. Peyam's Show thanks!
@alimghazzawi37004 жыл бұрын
At first glims i thought of course it’s smaller or equal because the dot product value equals the multiplication of the brooms times cos theta and cos theta its biggest value 1 and smallest value is-1 but i dont know of course there is a reason why this isn’t a valid proof i don’t understand high level algebra i am an engineer student.