Math Olympiad Question | Inequality | Cauchy-Schwarz Inequality | Algebra

  Рет қаралды 860

Dr. Wang

Dr. Wang

Күн бұрын

How to solve this Mathematical Olympiad problem? How to prove this inequality? This algebra video will show you the techniques and tricks like Cauchy-Schwarz inequality to solve this challenging Math Olympiad question. For another Math Olympiad video: • Math Olympiad Question...
For more questions, tips and tricks like this, please visit Dr Wang's Channel: / @drwangusa
Watch more Math Olympiad Videos:
• Math Olympiad Question...
• Find Sum of Series | M...
• Math Olympiad | Canadi...
Recommended Playlists:
[Math Olympiad Questions Around the Word]: • Turkey National Contes...
[Math Olympiad Questions]: • Math Olympiad
[Moscow Math Olympiad Questions]: • Moscow Middle School M...
[Algebra Questions]: • Algebra
Math Olympiad Question | Algebra Challenge | Inequality
Math Olympiad Question | Algebra Problem | You should know this trick
Math Olympiad Problem | Algebra Challenge
#matholympiadquestion #matholympiad #algebra #mathematics #DrWang #DrWangUSA

Пікірлер: 3
@DrWangUSA
@DrWangUSA Жыл бұрын
Watch more Math Olympiad Videos: kzbin.info/www/bejne/aX2TeGCqftSfepI kzbin.info/www/bejne/pHuUlXhnZ9ullcU kzbin.info/www/bejne/qZWTZq2fiLl6kNk
@nicolascamargo8339
@nicolascamargo8339 Жыл бұрын
Wow excelente aplicación de ese teorema
@ranshen1486
@ranshen1486 11 ай бұрын
I'm curious in a tight bound. Introducing free coefs {a,b,c} to the LHS, I can rewrite it as LHS = [1/√a] * √(4ax+4a) + [1/√b] * √(2bx-3b) + [1/√c] * √(15c-3cx). Cauchy-Schwarz inequality will be applied with parts in [ ] as one vector and the √ part outside [ ] as the other. So LHS² ≤ (1/a + 1/b + 1/c) { (4a + 2b - 3c)x + 4a - 3b + 15c }. In order to cancel all "x" term, we need to set its coef to 0, (4a + 2b - 3c) = 0, i.e., c = (4a + 2b)/3. After removing c, I got {1/a + 1/b + 3/(4a+2b) } * { 24a + 7b}. Since any common factor of both a and b will cancel out in the above expression, we can WLOG let R = b/a and a=1. After some trivial algebra, I got (1 + 1/R + 3/(4+2R)) (24+7R) = (14R³ + 111R² + 244R +96) / (2R² + 4R) as the bound, which I need to minimize over R > 0. Setting its derivative to 0, I got 7R⁴ + 28R³ - 11R² - 96R - 96 = 0. Unfortunately, I couldn't find any simple solution for this quartic (although I know it is there, it's just too messy to me). However, the only positive real root is approximately R ≈ 1.99. To make it nicer to work with, I will take R=2 in order to find a tigher upper bound. With a=1, b=R=2, and c=8/3, the LHS of the inequality is rewritten as √(4x+4) + [1/√2] * √(4x - 6) + [√(3/8)] * √(40 - 8x), and Caucy-Schwartz inequality gives LHS² < { 1 + 1/2 + 3/8 } * { 4 - 6 + 40 } = 71¼ which is tighter than 76=2²×19 in the question, as expected. If I use the numerical solution R = 1.9904, the maximum is √71.2497, only slightly below √71¼ given above.
Какой я клей? | CLEX #shorts
0:59
CLEX
Рет қаралды 1,9 МЛН
Вопрос Ребром - Джиган
43:52
Gazgolder
Рет қаралды 3,8 МЛН
УЛИЧНЫЕ МУЗЫКАНТЫ В СОЧИ 🤘🏻
0:33
РОК ЗАВОД
Рет қаралды 7 МЛН
a symmetric inequality
9:30
Michael Penn
Рет қаралды 30 М.
How To Speak Fluently In English About Almost Anything
1:49:55
EnglishAnyone
Рет қаралды 3,4 МЛН
My favourite Olympiad Inequality | IMO 1995 Problem 2 Solution
6:44
Creative Math Problems
Рет қаралды 18 М.
You, me, and my first International Math Olympiad problem
31:21
blackpenredpen
Рет қаралды 605 М.
Can you solve this equation?
11:00
MindYourDecisions
Рет қаралды 70 М.
Factor ANY Quadratic Equation Without Guessing | Outlier.org
14:02
Cauchy Schwarz Application
5:21
Dr Peyam
Рет қаралды 16 М.
Какой я клей? | CLEX #shorts
0:59
CLEX
Рет қаралды 1,9 МЛН