Change of Basis

  Рет қаралды 39,073

MIT OpenCourseWare

MIT OpenCourseWare

Күн бұрын

Пікірлер: 32
@ゾカリクゾ
@ゾカリクゾ 2 жыл бұрын
For the curious, the w's are the Lagrange polynomials: en.wikipedia.org/wiki/Lagrange_polynomial#A_perspective_from_linear_algebra
@weizong8814
@weizong8814 5 жыл бұрын
This recitation seems to be a glimpse of a more advanced linear algebra course. It contains a lot of knowledge that we do not know yet.
@qbtc
@qbtc 4 жыл бұрын
You are right. I've found these recitation problems to be usually more complicated and difficult then the assigned homework on the mit/ocw page.
@jeevan288
@jeevan288 Жыл бұрын
nope . i understood it based on concepts from previous lectures.
@SEBASTIAN-ul2uf
@SEBASTIAN-ul2uf 11 ай бұрын
Exactly 😂
@ashadds
@ashadds Ай бұрын
@@jeevan288nost probably you understood nothing
@tetsuroda
@tetsuroda 5 жыл бұрын
7:33 I do not understand why the matrix changes bases as required. The reason why I get confused is probably because w_{i} is not an element but a vector. Can somebody make it clearer?
@berrycoolcat
@berrycoolcat 4 жыл бұрын
I agree, the notation seems a bit confusing. I think about it like this, if you calculate Ac, where c is the vector holding the coords corresponding to the old basis (1,x,x^2): * When c = (1,0,0), which corresponds to the polynomial 1, Ac = (1,1,1), which agrees with the equation "1 = w1 + w2 + w3" above * When c = (0,1,0), which corresponds to the polynomial x, Ac = (-1,0,1), again agreeing with the equation "x = -w1 + 0 * w2 + w3" * Similarly for c = (0,0,1) You can see that the matrix successfully brings 3 linearly independent vectors in the old basis to the new basis, so it must be the correct "change of basis" matrix
@NisargJain
@NisargJain 6 жыл бұрын
6:32 how did she conclude that? can somebody elaborate that? Thanks.
@pydro432343
@pydro432343 6 жыл бұрын
'1' is a polynom of degree
@NicolasSchmidMusic
@NicolasSchmidMusic 5 жыл бұрын
@@pydro432343 Where can you deduce that a = 1 ?
@gustavotolson7307
@gustavotolson7307 5 жыл бұрын
It comes from the table in kzbin.info/www/bejne/qH7ZY6V6nrSHqas where the two bases (1, x, x²) and (w_1, w_2, w_3) are defined using 3 values of x. You simply put the values of x in the grinder and the values are there.
@mauriciobarda
@mauriciobarda 5 жыл бұрын
according to the table when x= -1 , 1=1 and w1=1, w2=w3=0 ; when x=0 then 1=1 and w1=w3=0 and w2=1, and when x=1 , 1=1, w1=w2=0 and w3=1 . You conclude that 1=w1+w2+w3 . Same way for the other cases.
@nerophon
@nerophon 5 жыл бұрын
I found the phrasing of the problem confusing. To me, the table implies that, for any polynomial in the space, alpha = 1 when x = -1. But this is impossible; hence the confusion. I was also surprised by the choice of the differentiation matrix D later in the explanation; the natural choice for me would be the transpose of what was written, so that Dx = d/dx where x and d/dx are column vectors.
@sedahmo5601
@sedahmo5601 5 жыл бұрын
Nicholas Bellerophon Agree. She should put y(x) and y(-1), y(0), y(1) in the corresponding column of that table instead.
@krischalkhanal2842
@krischalkhanal2842 10 ай бұрын
I think understanding this is the real deal. I tried by my own brute force way, and it did work, but she is using shortcuts here, which I am having hard time wrapping my head around. Much struggle needed.
@BluesbreakerWyatt
@BluesbreakerWyatt 11 ай бұрын
If you find this difficult, it helps a lot to read related chapters in the book "Introduction to Linear algebra", it cover much more details.
@maths2bsquared172
@maths2bsquared172 5 ай бұрын
can you mention the authors name,please
@BluesbreakerWyatt
@BluesbreakerWyatt 5 ай бұрын
@@maths2bsquared172 "Introduction to Linear Algebra" by Gilbert Strang, it is the book by lecturer and the main support book of the course.
@MikhailSamin
@MikhailSamin Жыл бұрын
This is absolutely cursed, I struggled for like half an hour to understand the problem and why is the polynomial at some point is some specific other polynomial, like, ??? The most cursed problem in all the recitations
@yangpiao3071
@yangpiao3071 2 жыл бұрын
I think the key to understand the whole thing is that w1 w2 w3 form a basis of polynomial, so wi must be a combination of 1 x and x squared.
@quirkyquester
@quirkyquester 4 жыл бұрын
what's happening at 6:36 my lorrrdd, please save meeee oops
@justpaulo
@justpaulo 4 жыл бұрын
In part a) she concluded that, for any polynomial p(x), we can find α, β and γ (the coeff in basis w1, w2 & w3) simply by calculating p(-1), p(0) and p(1): α = p(-1) β = p(0) γ = p(1) In particular, you can do the same for the initial basis polynomials 1, x & x². In doing so you are expressing the initial basis in the new w1, w2 & w3 basis. If you're struggling it also helps to find out w1, w2 & w3. I did that and they are given by: w1 = 1/2( x² - 1) w2 = -x² + 1 w3 = 1/2( x² + 1) Note that if you do w1 + w2 + w3 you get 1 indeed. Or if you do 6w1 + 5w2 + 4w3 you get -x+5.
@Longpan898
@Longpan898 Жыл бұрын
Nice exercise and good job, though maybe a bit fast in the explanation. But eventually, using the various comments, I fall back on my 2 legs. Thanks 🙏🏻
@dalisabe62
@dalisabe62 2 жыл бұрын
Not too clear and I am sure the concept should be a fairly easy one explained in more organized steps.
@kevinshao9148
@kevinshao9148 Жыл бұрын
oh wow!
@pydro432343
@pydro432343 6 жыл бұрын
entry 2,1 of A inverse is 1/2 (not -1/2) thanks
@NisargJain
@NisargJain 6 жыл бұрын
nope she's right..
@pydro432343
@pydro432343 6 жыл бұрын
@@NisargJain of course she is... (what was I thinking?) thanks
@kirubelmelak7143
@kirubelmelak7143 5 жыл бұрын
Entry 3, 2 on the inverse is 0.
@thedailyepochs338
@thedailyepochs338 4 жыл бұрын
i think khan academy does a better job at explaining basis than this recitation. Good lecture though
@iamjojo999
@iamjojo999 Жыл бұрын
Good polynomial examples, but poor explanations. She just go through it, not explain a bit. I can't understand at all until I see comments. She should have written down w1,w2,w3 in polynomial form first. Namely, assume w1=a1×(1)+b1×(x)+ c1× (x^2) And w2=a2×(1)+b2×(x)+ c2× (x^2) And w3=a3×(1)+b2×(x)+ c3× (x^2) So, written above 3 equations into matrix form We have [w1(next row) w2 (next row) w3]= [a1,b1,c1 (next row) a2,b2,c2 (next row) a3,b3,c3 ] × [ 1 (next row) x (next row) x^2] By writting in matrix form, we can easily observe the 3 by 3 matrix of a1 b1 c1 a2 b2 c2 a3 b3 c3 is the matrix that change basis of right hand side (1,x,x^2) to basis of left hand side (w1,w2,w3) So all we need to do is inserting known values of x=-1,0,1 and corresponding w1,w2,w3 at these points into above matrix to get all the coeeficients, which is what she does in part b.
31. Change of Basis; Image Compression
50:14
MIT OpenCourseWare
Рет қаралды 86 М.
Change of basis | Chapter 13, Essence of linear algebra
12:51
3Blue1Brown
Рет қаралды 2 МЛН
小丑教训坏蛋 #小丑 #天使 #shorts
00:49
好人小丑
Рет қаралды 49 МЛН
Cheerleader Transformation That Left Everyone Speechless! #shorts
00:27
Fabiosa Best Lifehacks
Рет қаралды 15 МЛН
It works #beatbox #tiktok
00:34
BeatboxJCOP
Рет қаралды 25 МЛН
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 19 МЛН
33. Left and Right Inverses; Pseudoinverse
41:53
MIT OpenCourseWare
Рет қаралды 224 М.
Change of coordinates
13:40
Dr Peyam
Рет қаралды 17 М.
Changing Between Two Bases | Derivation + Example
7:55
Dr. Trefor Bazett
Рет қаралды 42 М.
Change of basis explained simply | Linear algebra makes sense
11:36
Looking Glass Universe
Рет қаралды 67 М.
Exam #1 Problem Solving
14:53
MIT OpenCourseWare
Рет қаралды 18 М.
16. Projection Matrices and Least Squares
48:05
MIT OpenCourseWare
Рет қаралды 474 М.
Independence, Basis, and Dimension
13:20
MIT OpenCourseWare
Рет қаралды 417 М.
Matrices Top 10 Must Knows (ultimate study guide)
46:12
JensenMath
Рет қаралды 82 М.
Coordinates with respect to a basis | Linear Algebra | Khan Academy
16:08
30. Linear Transformations and Their Matrices
49:27
MIT OpenCourseWare
Рет қаралды 449 М.
小丑教训坏蛋 #小丑 #天使 #shorts
00:49
好人小丑
Рет қаралды 49 МЛН