Chinese Math Olympiad Problem | A Very Nice Geometry Challenge

  Рет қаралды 12,022

Math Booster

Math Booster

Күн бұрын

Пікірлер: 44
@davide5420
@davide5420 Жыл бұрын
I think there is little mistake at minute 8:30. (2√2r)² is 8r and not 8r². But in the end the solution is the same. A lucky error 😂
@MathBooster
@MathBooster Жыл бұрын
Yes, sorry for the mistake. We will get 16r = 16 , so r will be equal to 1.
@MYldrm
@MYldrm 3 күн бұрын
U r obsuletely right bro! Congratulations for your attention👏
@jimlocke9320
@jimlocke9320 Жыл бұрын
At 10:35, Math Booster has determined that r = 1, so ∆MNO has side MN = 1, side NO = 2√2 and hypotenuse MO = 3. Later in the video, the intersection of AB and XO is labelled E. ∆MNO and ∆OEA are similar by angle-angle (
@andydaniels6363
@andydaniels6363 Жыл бұрын
This is quite a bit simpler if we invert relative to the large (semi) circle: the image of the medium-sized circle is a horizontal line through the point called X in the video and the extension of diameter PQ maps to itself. Inversion preserves incidence relationships and tangency, so the images of the two smaller circles will be tangent to these parallel lines and externally tangent to the large semicircle at A and B, respectively. Our problem is reduced to finding these externally tangent circles, which is much simpler. These circles clearly have radius 2 and their centers are halfway between the two lines. Also, their centers must be at a distance of 4+2=6 from O. Calling the horizontal distance from O to one of these centers d, we have d^2+2^2=6^2, i.e., d=4√2. Using similar triangles, the distance EB is then 4√2*4/6 and AB is twice that, or (16/3)√2.
@HeywoodUmanoff
@HeywoodUmanoff Жыл бұрын
I'm not sure what and how you are inverting. Do you mean to rotate the 3 circles, but not the semi-circle, so that they end up back in the plane but above the semicircle (such that PQ is not moved)? And how does the inversion reduce the problem? And why do you say the smaller circles have radius = 2?
@andydaniels6363
@andydaniels6363 Жыл бұрын
@@HeywoodUmanoff Look up “circular inversion” or “inversive geometry.” The key thing here is that the image of the medium-sized circle under inversion w/r to the large one is a line tangent to the large (semi)circle and parallel to the given diameter. So, instead of having to find a circle tangent to two others and a line, the problem is transformed into that of finding a circle tangent to two parallel lines and a circle, which is much easier. The radius of such a circle should be obvious from inspection.
@HeywoodUmanoff
@HeywoodUmanoff Жыл бұрын
Thank you for the elegant solution! How do we know that O, M and A are colinear? Also, for OM^2=MN^2+ON^2, 16-8r=8r (not 8r^2). But r still =1.
@zsboya
@zsboya Жыл бұрын
If we have the result r = 1 (11:05), we can find the solution in other ways: A.) 2 right triangles with angular functions: 1. MOD triangle: cos(MOD) = 1/3 2. AOE triangle: sin(AOE)^2 = 1 - 1/9 = 8/9 and sin(AOE) = AE / 4 = 2*2^0.5 / 3 -> AE = 8/3 * 2^0.5 -> AB = 2*AE = 16/3 * 2^0.5 B.) With the help of a cosinus theorem (AOB): cos(AOE) = cos(MOD) = 1/3 -> cos(AOB) = cos(2*AOE) = 2*cos(AOE)^2 - 1 = 2/9 - 1 = -7/9 -> AB^2 = 2*4^2 - 2*4^2*cos(AOB) = 2*4^2 * (1 + 7/9) = 2*4^2 * 16/9 -> AB = 16/3 * 2^0.5 C.) Using ratio pairs: YE : (AY/2) = YC : MY = 2/r = 2 -> YE = AY -> AB = 4*YE ∆NMO and ∆CEY are similar, because AB = 16/3 * 2^0.5
@soroushneyestani
@soroushneyestani 9 ай бұрын
I am just a programmer and i don't have any knowledge of math olympiad, but I think every time there's a fast trick if you use it, it will be solved just in 10 seconds I have made this formula, for fast and easy to calculate questions like this : Before starting you must know the circle units for cos 45 degree for half 30 degree for lower than half 60 degree for higher than half Formula: Circle Diameter multiplied 2 multiplied cos of degree (upside down only numbers) 8*2(radical 2 divide 3) You can change positions and values, the answers is same If you can find any error i can fix it.
@ritwikgupta3655
@ritwikgupta3655 3 ай бұрын
Interesting to note that the sum of diameters of the 3 inner circles equals the dia of the semicircle.
@harikatragadda
@harikatragadda Жыл бұрын
Draw a horizontal line MT perpendicular to OC. If K is the midpoint of chord AY, and L is the midpoint of the middle circle chord, then ∆ALO, ∆MKY, ∆ONM and ∆MTC are Similar. AL/AO = YL/YC AL/4 = YL/2 AL = 2YL Hence if KY = x, then AL = 4x and YL = 2x Also, KY/MY = CL/YC x/r = 2x/2 r = 1 In the Right Triangle ONM, MN² + NO² = MO² MO = 4-2r = 2 MN = r = 1 NO = 3x This gives x = ⅔√2 AB = 8x = (16/3)√2
@zsboya
@zsboya Жыл бұрын
Hello! You've made a typo here: "Draw a horizontal line MN perpendicular to OC." - But MN and OC are parallel! Or is it to be understood that point D in the video is point N for you, i.e. MN for you is perpendicular to the MN section in the video? But I don't understand this at all: "KY/MC = CL/YC" -> YC/MC = CL/KY ?! ∆CLY and ∆MKY, ∆MNC are similar -> CL : YC = KM : YM = CN : MC or CY : MC = CL : CN -> CN = KY , why ?! And how does it follow that if KY = x, then YL = 2x, so AY = YL ? And here: "MO = 4-2r" ?! - The MO = 4 - r = 3 ! MN^2 = (3x)^2 = M0^2 - NO^2 = 3^2 - 1^2 = 8 -> x = (8/9)^0.5 = 2/3*2^0.5
@harikatragadda
@harikatragadda Жыл бұрын
@@zsboya Corrected, thank you!
@tunneloflight
@tunneloflight Жыл бұрын
Ah! The key is in recognizing that OMA are colinear. That arises from a line from the contact point through their centers must form a right angle. ergo the line AM ans AO must coincide, making AMO a straight line. Or, as others noted, the general rule, used already with exterior contact relying on CYM being linear, is that there is a linear connection between the centers of teo circles and there tamgent point of contact - whether they are in exterior or interior contact.
@spafon7799
@spafon7799 Жыл бұрын
This just looks wrong to me. First of all, I don't believe point M lies on OA. Therefore OM+MA is not equal to OA. Secondly, I don't believe AB goes through point y. Therefore the use of Pythagorean on triangle AEy appears to me to be incorrect. The way the problem is shown it appears to me that line AB is defined to run between the intersection of the small circle on the left and the large semicircle, and the other small circle on the right and the large semicircle. There is no justification to assume it also runs through the tangent points between the small and medium sized circles. OK, after reading some of the comments I see that indeed M does lie on OA. I still question whether AB runs through point y.
@User-jr7vf
@User-jr7vf 10 ай бұрын
I would answer "yes" to both of your questions, the reason being that I solved the problem by a different method after 3 hours of trial and error, and I got the same answer as "MathBooster".
@ritwikgupta3655
@ritwikgupta3655 3 ай бұрын
Y is the point of contact of small circle and large circle AB is defined to run through that point. As for your other question, already answered in the presentation.
@RAG981
@RAG981 Жыл бұрын
Quite an involved problem, with many things to work out on the way. Pity about your error at 8:33, but luckily you got the correct answer anyway!
@mariopopesco
@mariopopesco Жыл бұрын
Why do you assume that A, B and Y are colinear ?
@shalinichawla2198
@shalinichawla2198 Жыл бұрын
First straight line de rkhi hai ab
@papomanronpecabesaospina8913
@papomanronpecabesaospina8913 Жыл бұрын
r=2
@papomanronpecabesaospina8913
@papomanronpecabesaospina8913 Жыл бұрын
Hay un error al elevar al cuadrado
@Zine-EddineHachlafi
@Zine-EddineHachlafi 10 ай бұрын
Yes it's 8r and r=1. it's no thing Thank you very much for all the work
@zg0885
@zg0885 Жыл бұрын
How do you know? point(M) is on line(OA)
@zg0885
@zg0885 Жыл бұрын
line(OM)+line(MA) may be not straight line (OA)
@MathBooster
@MathBooster Жыл бұрын
If you join the centre of 2 touching circle (internally or externally) they it will pass through common point of contact.
@jarikosonen4079
@jarikosonen4079 Жыл бұрын
Or how to show point y is on line AB.. if its needed.
@howardaltman7212
@howardaltman7212 Жыл бұрын
Nice, as this proves that segments OA and MA are both perpendicular to the same tangent line at the point of tangency on semicircle O, which forces them to be colinear.@@MathBooster
@zg0885
@zg0885 Жыл бұрын
What will happen? If the line (OA) does not pass through the center of the circle(M)
@ivanhuertas5307
@ivanhuertas5307 Жыл бұрын
Why you assume that OMA are colinear???
@mariopopesco
@mariopopesco Жыл бұрын
Two tangent circles have colinear centers
@eromascanu
@eromascanu 8 ай бұрын
your solution assumes points A, y, E colinear
@ДжорджЛукавич
@ДжорджЛукавич Жыл бұрын
При возведении в квадрат на 8:26 ошибка, но результат всё-равно правильный😂
@Stanislaw2344
@Stanislaw2344 Жыл бұрын
Velice zajímavý příklad.
@aboubakrboubker-qg7sy
@aboubakrboubker-qg7sy Жыл бұрын
In around mn 7 who guarantee that OA will pass through M center of small circle...???!!!!
@MathBooster
@MathBooster Жыл бұрын
If you join centre of 2 touching circle (intenally or externally touching), then it will pass through common point of contact. Hence OM will pass through A.
@howardaltman7212
@howardaltman7212 Жыл бұрын
It's amazing to me that AY = (1/4)AB
@giuseppemalaguti435
@giuseppemalaguti435 Жыл бұрын
Io ho usate le equazioni delle 3 circonferenze,ponendo la condizione di tangenza(b^2-4ac=0)...non ho trovato di meglio,ah ah... comunque,risulta AB=16/3√2
@Touijarsoulaimane
@Touijarsoulaimane Жыл бұрын
Why o is the middle of pq
@papomanronpecabesaospina8913
@papomanronpecabesaospina8913 Жыл бұрын
Perdón, r=1, pero el se equivoco al elevar la última cantidad al 😮cuadrado, 2raiz de (dos por r), al cuadrado = 8r, 8r más 8r = 16r=16, donde r =1
@motogee3796
@motogee3796 5 ай бұрын
Too easy to be olympiad problem
@papomanronpecabesaospina8913
@papomanronpecabesaospina8913 Жыл бұрын
No existe ecuación de segundo grado
@lwels49
@lwels49 Жыл бұрын
It is over not by
Poland Math Olympiad | A Very Nice Geometry Problem
10:22
Math Booster
Рет қаралды 1,9 М.
🎈🎈🎈😲 #tiktok #shorts
0:28
Byungari 병아리언니
Рет қаралды 4,5 МЛН
I'VE MADE A CUTE FLYING LOLLIPOP FOR MY KID #SHORTS
0:48
A Plus School
Рет қаралды 20 МЛН
БОЙКАЛАР| bayGUYS | 27 шығарылым
28:49
bayGUYS
Рет қаралды 1,1 МЛН
A Nice Olympiad Trigonometric Exponential Equation
18:54
Brainy Equations
Рет қаралды 21
A Very Nice Geometry Problem | Math Olympiad
10:15
Math Booster
Рет қаралды 10 М.
A Very Nice Geometry Problem | Math Olympiad Challenge
10:45
Math Booster
Рет қаралды 9 М.
Find the Area of the Blue Triangle Inside of a Rectangle
9:45
The Math District
Рет қаралды 1 МЛН