I am Full Time Research Scholar in VIT-AP University ,Your tutorial is beneficiary for my research
@CodeWithAarohi Жыл бұрын
Glad it helped!
@siddharthmodi27402 жыл бұрын
Your channel is an underrated gem💎 Thank you mam 💛
@CodeWithAarohi2 жыл бұрын
Glad my video is helpful! Keep watching 😊
@yahiarafik9965 Жыл бұрын
Thanks for the effort you put in, i had an image classification task for a small dataset and thought of using Inception for it, this was really helpful!
@CodeWithAarohi Жыл бұрын
Glad it helped!
@arunagarnipudi44754 жыл бұрын
Simple and awasome, Thanks for the video!
@CodeWithAarohi4 жыл бұрын
Welcome
@alimaan75812 ай бұрын
Thank you so much, this video was very helpful for me.
@CodeWithAarohi2 ай бұрын
Glad it was helpful!
@AyushSharma-of9en4 жыл бұрын
awesome and thank you for clearing my all concept
@CodeWithAarohi4 жыл бұрын
Glad it helped you
@MrRabeaahmed4 жыл бұрын
thank you for your great explanation 👌👍
@CodeWithAarohi4 жыл бұрын
Welcome
@shilpsshilpa12854 жыл бұрын
Could you please make a video on visualizations of feature maps and filters in CNN?? ur explanations are spot on. Thank you
@CodeWithAarohi4 жыл бұрын
Sure , Will do soon
@vijayak73082 жыл бұрын
Excellent explanation, thank you very much Aarohi.
@CodeWithAarohi2 жыл бұрын
Glad you liked it
@prasadinipadwal3641 Жыл бұрын
superb explanation
@CodeWithAarohi Жыл бұрын
Thank you so much 🙂
@rahmamahgoub43634 жыл бұрын
Excellent explanation, Thanks
@CodeWithAarohi4 жыл бұрын
welcome
@radhikapatil80033 жыл бұрын
Amazing explanation ❤️ Thanks lot👍 mam
@CodeWithAarohi3 жыл бұрын
Welcome 😊
@NakibAkash2 жыл бұрын
Can you please make a video on Squeezenet architecture?
@trangle150611 ай бұрын
well presented. thanks a lot
@CodeWithAarohi11 ай бұрын
Most welcome!
@photogenicgestures31998 ай бұрын
Arohi cana you please tell me how the image sizes are 149*149*32 and 147*147*32 and 147*147*64 after first conv of 3*3
@satyajeetshashwat41158 ай бұрын
((299-3)/2) +1 =149 and 32 is the number of filters, just apply the formula : ((input - filter +2*padding)/stride)+ 1
@zakariaelalaoui28139 ай бұрын
Good work, thanks
@CodeWithAarohi9 ай бұрын
Thanks for watching!
@nabeelaashraf35182 жыл бұрын
Well Explained
@CodeWithAarohi2 жыл бұрын
Thanks!
@littlespace284 жыл бұрын
what is the reason for not implementing the upper path between Inception Block B and Reduction Block B (in which we have avg pool , Conv, FC, FC) and also the reason for not implementing the FC between Global average Pool and softmax
@CodeWithAarohi4 жыл бұрын
Sorry I am not getting what exactly you were asking
@littlespace284 жыл бұрын
@@CodeWithAarohi What is the reason for not implementing the auxiliary classifier ?
@KOTESWARARAOMAKKENAPHD Жыл бұрын
good explanation madam
@CodeWithAarohi Жыл бұрын
Thank you so much 🙂
@meyouanddata93384 жыл бұрын
awesome :)
@CodeWithAarohi4 жыл бұрын
Thankyou
@yuchenzhao26634 жыл бұрын
really appreciate your work, big thanks! I have one question, when we factorizating 5x5 to two 3x3, the number of parameters are reduced, but if we slide the input from previous activation using 3x3 filter, it would be more multiplications than using 5x5 filter, so is this factorization make the convolution less computation effecient even with fewer parameters?
@CodeWithAarohi4 жыл бұрын
Thankyou for appreciating my work . Now coming to your question- See always output of previous layer become input to next layer and when output of previous layer comes to next CNN layer where filter size is 5*5 then the number of parameters would be more as compare to 2 cnn layers with 3*3 filter size. because of this there would be less computation with fewer parameters.
@yuchenzhao26634 жыл бұрын
@@CodeWithAarohi If we use 5x5 filter to convolve a for example 5x5 input to a 1x1 output, we will need 25 multiplications. However if we use two 3x3 filter instead, we will need to do 3x3x9 multiplications in first 3x3 filter convolution and 9 multiplications in second 3x3 filter convolution to do the same thing as the original 5x5 filter does. Is this suggest this factorization lead to more computational expensive? Thanks for repling. I understand the parameter is less after this factorization, but if the computational efficient is reduced why would we do this? Or if there are some balance between those two metrics?
@rafabaranowski5134 жыл бұрын
@@yuchenzhao2663 If you have input picture 100x100x1 and mask 5x5 stride 1, result will be 96x96x1 which gives 96x96x25 = 230400 multiplications. Inf you have mask 3x3 stride 1 output size will be 98x98x1 which gives 98x98x9 = 86436 multiplications. It reduces number of parameters and also number of multiplications.
@yuchenzhao26634 жыл бұрын
@@rafabaranowski513 Got it! Thanks!
@PLimbu-gh3vf2 жыл бұрын
can you please share the presentation
@rijulsingh98033 жыл бұрын
Great great great explanation and really intuitive Although I have one doubt, 5x5 convolutions were being used for feature extraction at a larger scale so how is that going to work out with two 3x3 convolutions?
@anwaarkhalid35083 жыл бұрын
Can you please share the link of the original paper?
@KOTESWARARAOMAKKENAPHD Жыл бұрын
please provide the lecture videos on topics Deep Dream ,Deep Art , Fooling Convolutional Neural Networks
@CodeWithAarohi Жыл бұрын
I will try.
@KOTESWARARAOMAKKENAPHD Жыл бұрын
@@CodeWithAarohi thank you for your response
@ragibshariar77893 жыл бұрын
Could you please give me a summary article of inception v3 architecture ??
@CodeWithAarohi3 жыл бұрын
Sorry, I don't have such article
@darshansr90252 жыл бұрын
Ma'am great explaination! if you don't mind could you share the ppt for the whole CNN playlist. Thanks in Advance.
@ahmedhusham77283 жыл бұрын
Can you please explain what is "RMSProp Optimizer" in Inception-v3 and where it found?
@CodeWithAarohi3 жыл бұрын
Sure, Will do a video on that soon
@leelamanasachidella33962 жыл бұрын
Mam can you please make a video on architecture description of Inception resnet v2