YOLOv8 | Object Detection on a Custom Dataset using YOLOv8

  Рет қаралды 152,602

Code With Aarohi

Code With Aarohi

Күн бұрын

YOLOv8
Ultralytics YOLOv8, developed by Ultralytics, is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image classification tasks.
Official YOLOv8 github repo: github.com/ult...
#######################################################
For queries: Comment in comment section or you can mail me at aarohisingla1987@gmail.com
#######################################################
#yolov8 #yolo #objectdetection #yolov5 #yolov8 #yolov7 #yolov9 #yolov10

Пікірлер: 349
@shravanacharya4376
@shravanacharya4376 Жыл бұрын
I have gone through your various tutorials, I can guarantee 100% that everyone will understand this concept. Thank you so much you're doing an amazing job.
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Glad to hear that!
@FREEFIREGAMER-iv8dx
@FREEFIREGAMER-iv8dx Жыл бұрын
maam ,please give me code how to extract detected objects in an image and save those images in seperate files ,like if we detect 5 objects in an image using yolov8,and that image is saved in a file ,then i need the detected objects seperated please help maam@@CodeWithAarohi
@AZone.online
@AZone.online 2 ай бұрын
I was so confused in the training of YOLO Models but after watching this tutorial I'm so cleared like my Name. Thank You so much.
@CodeWithAarohi
@CodeWithAarohi 2 ай бұрын
Glad it helped!
@sushantparajuli611
@sushantparajuli611 2 жыл бұрын
Wow!! you are brilliant ma'am. Up to date every time. Thank you so much for the invaluable pieces of information.
@CodeWithAarohi
@CodeWithAarohi 2 жыл бұрын
Glad you liked it!
@Rishu_Dakshin
@Rishu_Dakshin Жыл бұрын
Im new to Yolo and with the help of your video i was able to run the code. Thank you for your efforts
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Glad I could help!
@hamidraza1584
@hamidraza1584 Жыл бұрын
Your videos are very informative, in understanding the deep learning models and neurul network s.lots of love from Lahore Pakistan
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Glad to hear that!
@sangeethag8228
@sangeethag8228 4 ай бұрын
Thanks a lot ,Mam . Very clear from scratch. Great job.
@CodeWithAarohi
@CodeWithAarohi 4 ай бұрын
Most welcome 😊
@neeraj.kumar.1
@neeraj.kumar.1 2 жыл бұрын
Thanks Aarohi It was as simple as your previous videos.
@CodeWithAarohi
@CodeWithAarohi 2 жыл бұрын
Glad you liked it!
@thigobd
@thigobd 2 ай бұрын
Today i first wath your video, as you describe everything i relaly like it & i learn new something from the video.
@CodeWithAarohi
@CodeWithAarohi 2 ай бұрын
Glad to hear that
@dcdales
@dcdales Жыл бұрын
Gonna lay out a problem I encountered and its solution. Great tutorial by the way, thanks so much! Problem: "illegal hardware instruction" Solution: Update MacOS. (Nope - that's just a temporary fix - ACTUAL solution: type 'deactivate' to leave the environment, then open the environment again with 'source myenv/bin/activate'. Works for me now.
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Thank you for sharing!
@hamidddshekoohiii8267
@hamidddshekoohiii8267 Жыл бұрын
You plainly explained it.Thankyou so much👍👍
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Glad it was helpful!
@adityanjsg99
@adityanjsg99 3 ай бұрын
All her opencv tutorials are thorough
@CodeWithAarohi
@CodeWithAarohi 3 ай бұрын
Thanks so much! I'm glad you find them helpful!
@ismailidowu7746
@ismailidowu7746 Жыл бұрын
Never mind again with my previous question. I got the solution. Thanks
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Glad to hear that!
@PRIYAINTOUCH
@PRIYAINTOUCH 2 жыл бұрын
Excellent, Elite and Eloquent content and crystal-clear explanations. If possible, provide object detection with voice or sound output ie. object name.
@aymeneboucha4974
@aymeneboucha4974 Жыл бұрын
Amazing video, everything is clear.
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Great to hear!
@tonya4092
@tonya4092 8 ай бұрын
I really enjoyed your video. I found it to be very concise.
@CodeWithAarohi
@CodeWithAarohi 8 ай бұрын
Glad you enjoyed it!
@shinwarikhan4677
@shinwarikhan4677 2 жыл бұрын
thank you so much mam.. l learn much from your videos thanks alot of... 💗💗💗
@CodeWithAarohi
@CodeWithAarohi 2 жыл бұрын
My pleasure 😊
@createfun1106
@createfun1106 Жыл бұрын
Very nice tutorial. Thanks 😊
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
You're welcome 😊
@DhavalShukla-mc4os
@DhavalShukla-mc4os 11 ай бұрын
I am trying to do a traffic light detection project on google colab and during training I am encountering path related errors. What I had in my .yaml file is configuration of train, val, test folders each containing images, labels folders with paths as /content/drive/MyDrive/dataset/train/images and such is the same for /content/..../train/labels. Now what should there exactly be for it to run without errors? Would you have an idea? What paths I should add in every case? Any suggestions from anyone?
@arpitapujapanda8415
@arpitapujapanda8415 3 күн бұрын
Hi Aarohi, Can you create some video, how to use and train yolo models without ultralytics. That will be really helpful.
@CodeWithAarohi
@CodeWithAarohi 26 минут бұрын
Sure! YOu can check this: kzbin.info/www/bejne/rorHamidpdV9Y5I
@JasonsFun17
@JasonsFun17 2 жыл бұрын
It's a great video. I have tried it out and it's working like a charm. Thank you
@CodeWithAarohi
@CodeWithAarohi 2 жыл бұрын
Glad video is helpful!
@soravsingla6574
@soravsingla6574 Жыл бұрын
Code with Aarohi is Best KZbin channel for Artificial Intelligence #CodeWithAarohi
@Developer_Lop_Lop
@Developer_Lop_Lop Жыл бұрын
thank for your video madam. hope you have a great day
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Thank you! You too!
@Anirudht4a
@Anirudht4a 15 күн бұрын
Can you please do a video on how to load this model and build a front end application using streamlit and connect to this. It will be very helpful
@CodeWithAarohi
@CodeWithAarohi 14 күн бұрын
Noted!
@gareven
@gareven 9 ай бұрын
Thank you for such a great video! Can you please also make a video to show how to implement focal loss function to YOLOv8?
@sanathspai3210
@sanathspai3210 9 ай бұрын
Hi Arohi. It is very good video and one request could you create playlists for going throughout the papers from yolov1 - v9(present version)? It would be very very beneficial
@CodeWithAarohi
@CodeWithAarohi 9 ай бұрын
I will try!
@germancruzram
@germancruzram 6 ай бұрын
Will there be any case of transfer learning to add a new class (x classes + new class) to a previously trained model YOLOv8 (x classes)?
@jassimelaouni8940
@jassimelaouni8940 Жыл бұрын
Great explanation ! thank youu
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Glad it was helpful!
@rythm_nayan
@rythm_nayan 10 ай бұрын
Could you please do a tutorial on how to use yolo for object detection in cases where the objects you want to detect are not in the pretrained dataset. As in , to use the pretrained model for feature extraction and detect the custom objects.
@hbrt10
@hbrt10 Жыл бұрын
hi, thank you for the documentation. I have a problem about predict images. i trained my model and predict image grayscale but i come into view error : ValueError: axes don't match array. What should I do? I must predict image grayscale.
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Your model should be trained on grayscale images if you want to make prediction on grayscale image because colored images have 3 channels and grayscale images have channel 1.
@SajinSree-rz5ly
@SajinSree-rz5ly Жыл бұрын
from ultralytics import YOLO model=YOLO('yolov8n-seg.pt') model.predict(source='img.jpg') Mam Code Is Running But Still It not saving the segmented image
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
model.predict(source='img.jpg', save=True)
@cyberhard
@cyberhard 2 жыл бұрын
As usual, great job!
@CodeWithAarohi
@CodeWithAarohi 2 жыл бұрын
Thank you
@cyberhard
@cyberhard 2 жыл бұрын
@@CodeWithAarohi you're welcome
@rakeshbullet7363
@rakeshbullet7363 Жыл бұрын
Can u please share the link for github repo shown in the video . Could not locate that in the description of the video unless i missed it.
@hiteshsingh1039
@hiteshsingh1039 Жыл бұрын
Hy aarohi , could you pls also make videos on productionizing models , dufferent ways
@kosttavmalhotra5899
@kosttavmalhotra5899 Жыл бұрын
mam is there any video on you channel which shos how to install, which folders to opt for and while dealing with ultralytics env on your channel
@mayaltaee2963
@mayaltaee2963 Жыл бұрын
@CodeWithAarohi, Hello, I traind the yolov8 (detect) on custom dataset now how can I assess the yolov8 model with test dataset where I can get Recall , Precision, mAP, confusion matrix, curvs, and accurecy.
@oxynofiring
@oxynofiring 10 ай бұрын
how can i reuse this trained model by saving it
@AnmolKumar-so8lh
@AnmolKumar-so8lh 5 ай бұрын
You will get a weight file after training then you have to write a inference script you can get that from yoloV8 docs probs and go through the inference script
@siddharthabhat2825
@siddharthabhat2825 Жыл бұрын
How to get other metrics like accuracy, specificity and sensitivity ?? Will it be stored anywhere or if not how to get tp, fp, values, so that any metrics can be calculated ??
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
To calculate metrics such as accuracy, specificity, and sensitivity, you'll need a confusion matrix which we already have. Accuracy = (True Positives + True Negatives) / Total Predictions Sensitivity = True Positives / (True Positives + False Negatives) Specificity = True Negatives / (True Negatives + False Positives) Precision = True Positives / (True Positives + False Positives)
@siddharthabhat2825
@siddharthabhat2825 Жыл бұрын
​@@CodeWithAarohi Thanks a lot for replying !! Yea, I can calculate final value manually. But if i want to draw graph/curve, then how can i extract values at every epochs ?? Also, how to plot the ROC curve ??
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
@@siddharthabhat2825 use results.txt file. All the results are saved there. Using this results.txt file. You can plot the graphs for all the epochs.
@siddharthabhat2825
@siddharthabhat2825 Жыл бұрын
@@CodeWithAarohi results.csv gives precision, recall, mAP & other loss values. Is it possible to get tp, fp, tn ,fn values ??
@Marketblank
@Marketblank Жыл бұрын
Hi Thank you for the valuable information and my question which tools you used for labeling? Thank you
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Sometime I use labelImg tool and sometime I work with roboflow.
@jonatapaulino
@jonatapaulino 2 жыл бұрын
Hey, thanks for the tips. This files images/1.jpg is where? I downloaded an image and ran the code but I couldn't get the image recognized.
@LolLoloilol
@LolLoloilol Жыл бұрын
Hello Mam, the video was very helpful thank you for making such good content. can you explain how layer freezing works how we can do it on our pretrained model in yolo it would be quite helpful for us to understand thank you.
@boazmwubahimana4702
@boazmwubahimana4702 2 жыл бұрын
Actually i started watching this video after 23min after uploading, this is very amazing. When are you going to release how to train seg, det and cls model as you mentioned in the endition of this video? We'll buy a coffee one day!
@CodeWithAarohi
@CodeWithAarohi 2 жыл бұрын
Hi, Glad you liked my video. And I will release the Image segmentation on Custom dataset in next 3-4 hours :)
@boazmwubahimana4702
@boazmwubahimana4702 2 жыл бұрын
@@CodeWithAarohi can't explain the thankful but over all best of good luck! Resile and Prosper in this year2023. Need to tell others about this work !
@CodeWithAarohi
@CodeWithAarohi 2 жыл бұрын
@@boazmwubahimana4702 kzbin.info/www/bejne/o6rPlpKag6-dp8k
@boazmwubahimana4702
@boazmwubahimana4702 2 жыл бұрын
@@CodeWithAarohi thanks
@karmayogi5531
@karmayogi5531 6 ай бұрын
Hello ma'am, when I am running the first command line to detect......I am getting this error...(yolov8_myenv) E:\MTP Project\YOLO_P1>!yolo task=detect mode=predict model=y olov8n.pt source="images/1.jpg" '!yolo' is not recognized as an internal or external command, operable program or batch file. Can you please help me with this.🙏
@Negin-mk1id
@Negin-mk1id 8 ай бұрын
Hi great tutorial, can you provide the dataset that you used for this tutorial? I want to see the format of the text files
@CodeWithAarohi
@CodeWithAarohi 8 ай бұрын
Check this dataset. This dataset have 2 classes - table and chair. universe.roboflow.com/search?q=furniture%2520detection%2520object%2520detection&p=3
@dna-cs
@dna-cs Жыл бұрын
Thank you so much ma'am. Your instruction is very clear and easy to understand. But I don't know how to intepret the results: confusion matrix, the charts (box loss etc.). Is there any standard documentation to follow? Thank you
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Confusion Matrix: True Positive (TP): Correctly predicted positive instances. True Negative (TN): Correctly predicted negative instances. False Positive (FP): Incorrectly predicted positive instances. False Negative (FN): Incorrectly predicted negative instances. Accuracy: (TP + TN) / (TP + TN + FP + FN) Precision: TP / (TP + FP) Recall (Sensitivity): TP / (TP + FN) F1 Score: 2 * (Precision * Recall) / (Precision + Recall) Use these metrics to gauge the model's performance, considering the balance between precision and recall. Loss Charts (e.g., Box Loss): Training Loss: Measures how well the model is learning during training. A decrease indicates learning. Validation/Test Loss: Indicates how well the model generalizes to new data. Monitor for overfitting (training loss significantly lower than validation loss). Understanding these metrics helps you assess the model's accuracy, ability to identify positives/negatives, and potential overfitting.
@dna-cs
@dna-cs Жыл бұрын
@@CodeWithAarohi Thank you ma'am!!
@AbhijitDas-c5m
@AbhijitDas-c5m Жыл бұрын
Aarohi ma'am, I have a dataset of chest xrays. I want to predict the active tb and latent tb . but the other 2 classes dont have annotations. how to approach this?
@oykuecekoken3350
@oykuecekoken3350 Жыл бұрын
Thank you for the video. I want to show the timer value in the bounding box for each introduced object, how should I do it?
@arka6501
@arka6501 Жыл бұрын
"yolo is not recognized as an internal or external command operable program or batch file"; I am facing this problem when I am going to execute the yolo command. Please give me some advice to solve this problem
@aviralkatiyar2538
@aviralkatiyar2538 Жыл бұрын
Again a really nice video. But from next time could you please share the jupyter notebook as well.That will be a big help.
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Sure I will
@SanaN-w2r
@SanaN-w2r Жыл бұрын
hi can u tell im using Yolov8 model for Obj Detection on colab, dataset from public Roboflow, detecting defects. Pl tell datasets spilt, train valid or train valid and test too. min epochs for good mAP> pl reply. How to change, hyperpara
@zaidbilakhia6312
@zaidbilakhia6312 Жыл бұрын
Hello, WIth GPU (with cuda) it doesnt work but with cpu it works. NotImplementedError: Could not run 'torchvision::nms' with arguments from the 'CUDA' backend. This could be because the operator doesn't exist for this backend, or was omitted during the selective/custom build process (if using custom build)
@allea-zb7kl
@allea-zb7kl 9 ай бұрын
hi, I have a question. if I divide the dataset into training and testing only, is it necessary to run the validation part? and if not, during inference how to find out the mAP?
@CodeWithAarohi
@CodeWithAarohi 9 ай бұрын
Skipping validation means you won't be monitoring the model's performance during training. You should only skip this part if you're confident in your training procedure and the dataset quality. Regarding inference and calculating mAP without a validation set- 1-Run inference on your test dataset and get the predicted bounding boxes. 2- Calculate Intersection over Union (IoU) between predicted bounding boxes and ground truth bounding boxes. 3- Use the IoU values to compute Precision-Recall curves for each class. 4- Compute Average Precision (AP) for each class. 5- Calculate mAP by taking the mean of AP across all classes. Here is a code for validation. you can try with this code: github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/detect/val.py
@allea-zb7kl
@allea-zb7kl 9 ай бұрын
@@CodeWithAarohi If I split the data into train, val, and test sets, should I use the mAP from the validation set as the benchmark, or do I also need to calculate the mAP from the test set? By the way, I am conducting research on object detection and I am still confused about which mAP should be used as the benchmark: the mAP from the validation set or the mAP from the test set? Please help me.
@Sandykrang
@Sandykrang Жыл бұрын
hi, great video, can we here testing matrices on test data, like classification reports for CNNs
@imenselmi9230
@imenselmi9230 Жыл бұрын
Can you make video about model inference using NVIDIA triton server and yolo how optimise the model using triton
@kirankumar29352
@kirankumar29352 25 күн бұрын
can you include the part of data preparation too
@CodeWithAarohi
@CodeWithAarohi 25 күн бұрын
kzbin.info/www/bejne/q5WpgJ98rLqoq9U
@suhailshaji-u9h
@suhailshaji-u9h Жыл бұрын
Can you please explain why the background is there in confusion matrix even i don't have a class called background.did it trained with other classes
@lavanyaravilla1511
@lavanyaravilla1511 2 ай бұрын
Hi i followed ur method and did detection using yolov8on custom dataset .training and validation results are correct but predicting on unseen image is incorrect..can u suggest me how to tackle these kind of problem
@CodeWithAarohi
@CodeWithAarohi 2 ай бұрын
You can increase the dataset if you think the dataset is complex and data is not sufficient for the model. YOu can also try to increase the training epochs. Try working with different learning rates.
@lavanyaravilla1511
@lavanyaravilla1511 2 ай бұрын
how to enhance prediction with lower conf classes
@AmmarAbbasi-l2n
@AmmarAbbasi-l2n Жыл бұрын
can we run live inferencing on yolov8 without using the ultralytics library like we used to in previous version of yolov8? I want to setup the codebase instead of directly running using ultralytics library.
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Yes, you can run YOLOv8 for live inference without relying on the Ultralytics library, but it requires setting up the environment, handling the model loading, inference, and post-processing manually.
@nuhmanpk3082
@nuhmanpk3082 Жыл бұрын
Great Video. What the format that I need to follow for dataset preparation. Same as yolov5,7 images->train,val , lables->train,val
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Yes, exactly
@nuhmanpk3082
@nuhmanpk3082 Жыл бұрын
@@CodeWithAarohi Can You make a video on how to use a onnx format file or a core ml file in mobile devices for live detection on V8 version
@FREEFIREGAMER-iv8dx
@FREEFIREGAMER-iv8dx Жыл бұрын
maam ,please give me code how to extract detected objects in an image and save those images in seperate files ,like if we detect 5 objects in an image using yolov8,and that image is saved in a file ,then i need the detected objects seperated please help maam
@jamesroy9027
@jamesroy9027 Жыл бұрын
Thank You so much 🤗🤗🤗
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
You're welcome 😊
@fabiodagostino7529
@fabiodagostino7529 Жыл бұрын
can you explain the labels annotation in details? Is it x,y of the top left corner + width and height normalized?
@CodeWithAarohi
@CodeWithAarohi 11 ай бұрын
x-coordinate of the center: This is the x-coordinate of the center of the bounding box relative to the width of the image. y-coordinate of the center: This is the y-coordinate of the center of the bounding box relative to the height of the image. Width of the bounding box: This is the width of the bounding box relative to the width of the image. Height of the bounding box: This is the height of the bounding box relative to the height of the image. These coordinates are often normalized to the range [0, 1], where (0, 0) represents the top-left corner of the image, and (1, 1) represents the bottom-right corner.
@dheerajvasudevaraovelaga6006
@dheerajvasudevaraovelaga6006 Жыл бұрын
I really liked the content and the way you explained it. Is it always required to have a text file for every single image? Doesnt that make it very hard considering people only have images with them? Can you share more knowledge on how you created that custom dataset so that it could be trained on YOLOv8?
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Yes, you always need annotations for each image in txt format. This is the mandatory step to use this algorithm.
@MRDAM-zn4qf
@MRDAM-zn4qf Жыл бұрын
Hello ma'am, i would like to know if we can add the logic into it?? And if yes then how? I'm currently working on a project where i want to detect traffic violations such as without_helmet, and then if a rider falls into that category i want to capture the image of the number plate corresponding to the rider and then apply OCR. Please help us!
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Yes, You can implement this. You need 2 models. First model will detect traffic_violations and then if traffic_violation detected then use another model which is trained to detect license plates. And if license plate is detected then use easy-ocr to fetch the details of that license plate. I will try to do a video on this.
@MRDAM-zn4qf
@MRDAM-zn4qf Жыл бұрын
@@CodeWithAarohi thank you ma'am, there's another violation which is crosswalk violation, if a vehicle is standing on a crosswalk it should detect it as a violation, can i implement something like that with MASK R-CNN or Yolov8??
@jeffreyeiyike122
@jeffreyeiyike122 Жыл бұрын
@CodeWithAarohi, please can you help with directions on how to features for yolo v8, a layer before the output layer where I can find images features, bounding features, confidence/probability before it get to the output layer. I need it for the training of another model. Thank you
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
USing this code, you can get boxes, clabels and probability scores. from ultralytics import YOLO # Load a model model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training) #results = model("images/person.jpg", save=True) results = model("images/1.jpg", save=True) class_names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'] for result in results: boxes = result.boxes # Boxes object for bbox outputs probs = result.probs # Class probabilities for classification outputs cls = boxes.cls.tolist() # Convert tensor to list xyxy = boxes.xyxy xywh = boxes.xywh # box with xywh format, (N, 4) conf = boxes.conf print(cls) for class_index in cls: class_name = class_names[int(class_index)] print("Class:", class_name)
@angelospapadopoulos7679
@angelospapadopoulos7679 2 жыл бұрын
amazing and up to data as always !
@CodeWithAarohi
@CodeWithAarohi 2 жыл бұрын
Thank you
@ishakag262
@ishakag262 Жыл бұрын
I am getting the Box(P = 0 R = 0 mAP50 = 0 mAP50-95 = 0 )zero at the time of training the dataset at the epochs any solution for this issue???
@vincegallardo1432
@vincegallardo1432 Жыл бұрын
Hello Good Morning, I just wanted to ask how can I compile the Yolov8 to use it offline. Is it possible to compile it on Tensorflow?
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
To compile YOLOv8 for offline use doesn't involve a traditional compilation process as you might see with some programming languages. Instead, you need to ensure you have all the necessary dependencies installed and the pre-trained weights downloaded. YOLOv8 will then run inference on your local machine. I never tried with tensorflow as the official repo using pytorch.
@salmankmohammed
@salmankmohammed 4 ай бұрын
I have trained a custome dataset on Yolov8. The training set consists 600 images. Unfortunatelly, when I have trained the yolov8 it only trained on 30 images, so could you please help me to solve this problem..thanks in advance.
@CodeWithAarohi
@CodeWithAarohi 4 ай бұрын
Check if the format of images are correct.
@Rishu_Dakshin
@Rishu_Dakshin Жыл бұрын
Hello, Thank you very much for your reply. i also want to know how to capture the accuracy of the model. information like ( How many images testing How many clear How many are not clear Model|accuracy|%|images tested) need to be captured. Can you please help me with this
@KKD-q7f
@KKD-q7f 2 жыл бұрын
Hi, great video!I have a question:in object detect ,I only have one training class,for exemple “dog”, the training effect is not good, and the label boxes are all the same size, how should I improve it
@CodeWithAarohi
@CodeWithAarohi 2 жыл бұрын
need more detail about your dataset to suggest you anything
@KKD-q7f
@KKD-q7f 2 жыл бұрын
@@CodeWithAarohi Object penct 1.5%
@victorarayal
@victorarayal Жыл бұрын
Thanks! Is it possible to change the size of the images at training and set a custom one?
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Yes, Use this argument: imgsz 640
@pragnesh_kumar.p
@pragnesh_kumar.p Жыл бұрын
i keep getting this error when i try to import ultralytics into the python notebook, although the CLI commands are working and i am able to see the predictions: AttributeError: 'OutStream' object has no attribute 'reconfigure'. Any solutions?
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
I am not sure about the error but you can try to upgrade the jupyter notebook or reinstall it.
@nouamanesouadi7187
@nouamanesouadi7187 Жыл бұрын
how can I detect using a python script, the consol shows me that the image is processed but I can't find where it's saved
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
By default it get stored in "runs" folder. If your image is not there then use save=True in your command
@JustShorts-7
@JustShorts-7 Жыл бұрын
Ma'am , what if the source is webcam or external camera , can it detect object in real time and can we use this model separately to detect from Web cam with bounding box in real time ? Please answer this
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Yes, you can use webcam as input to your Object Detection model.
@AJ-wf3wp
@AJ-wf3wp Жыл бұрын
mam how are you having predict and all folders ? please tell me how to setup env from starting.
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Run these commands one by one- # In below command 3.9 is my python version with which I want to create separate environment py -3.9 -m venv myvenv myvenv\Scripts\activate pip install ultralytics pip install jupyter notebook # To open jupyter notebook type: jupyter notebook
@AJ-wf3wp
@AJ-wf3wp Жыл бұрын
@@CodeWithAarohi mam while installing labelImg ....I am facing issue "ERROR: Failed Building wheel for PyQt5-sip"
@ИльяГригорьевичМельников
@ИльяГригорьевичМельников Жыл бұрын
i followed all ur steps, but when its at the training part, I face an issue: "No labels found in path\labels.cache", can not start training. Deleting and restarting doesn't help... (The labels.cache file is only created in the train folder)
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
If you are getting .cache for training labels and not for val labels. That means there is some issue with your validation annotations. Check them
@TucBT
@TucBT Жыл бұрын
Hi, I am in the first step and try to predict model in CLI, I cannot get the "result saved to runs\detect\..." thing. It takes the image, model etc. but does not give the result, why?
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Use save=True in command
@nurnajiha6013
@nurnajiha6013 Жыл бұрын
can i know where to get the yolov8_pretrained script that you used in the video?
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
I am sorry, I am not sure which folder yo are talking about. Can you share the time stamp where I discussed it.
@ShivamRana-wv6uo
@ShivamRana-wv6uo 2 жыл бұрын
after using task=predict command it is showing "448x640 10 humans, 16.0ms " but the output image is not shown. Iam running it on pycharm
@himankaghosh7307
@himankaghosh7307 2 ай бұрын
Great. Thanks
@CodeWithAarohi
@CodeWithAarohi 2 ай бұрын
Welcome 😊
@Sandykrang
@Sandykrang Жыл бұрын
Thank you for amazing tutorial. I am just nor clear with yaml file. Do I have to prepare it manually? Please give me solution this.I will be so thankful to you.
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Yes, You have to prepare it yourself. Just create a file and name it data.yaml and then paste the below code: train: /path/to/train/images val: /path/to/val/images nc: 2 names: ['class1', 'class2']
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
You have to change the paths and class names and number as per your dataset
@Sandykrang
@Sandykrang Жыл бұрын
@@CodeWithAarohi Thank you man
@UR3C00L
@UR3C00L 2 жыл бұрын
Great video! Do you know how to choose specific model to train (i.e. yolov8s or yolov8m) without passing pretrained weights?
@CodeWithAarohi
@CodeWithAarohi 2 жыл бұрын
Yes, you cando that. Get the yaml file of that model. It is available in yolov8 github repo. And then change the number of classes. Leave the other things as it is.
@connectrRomania
@connectrRomania 2 жыл бұрын
Kernel dead when training on custom data, any advice how to minimize the model parameter to avoid cuds problems
@CodeWithAarohi
@CodeWithAarohi 2 жыл бұрын
results = model.train(data="custom_data.yaml", epochs=20, workers=1, batch=8,imgsz=640)
@hemanthsrivathsav
@hemanthsrivathsav Жыл бұрын
I trained the yolov8 model but is there any way that I can download the trained model???
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
After training your model stored in runs folder. And if you want to use pretrained models then you can get it from yolov8 github repo
@aasheesh6001
@aasheesh6001 Жыл бұрын
Thanks for this video
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Most welcome
@harshsonawane578
@harshsonawane578 2 жыл бұрын
i am trying this in google colab I just want to use this YOLOv8 model and show result but runs folder is not getting formed and i cant find a way to store results and display it if i set " save_conf=True " then runs folders gets form and in predection folder croped images are getting stored please help
@harshsonawane578
@harshsonawane578 2 жыл бұрын
so CLI use kar ke pata nahe kaise save karna h par py me model.predict() save=True pass karne ke bad save ho ra
@srivalliyada6610
@srivalliyada6610 3 ай бұрын
Mam i did this but the dataset is imbalanced is it ok to continue? And how can i balance an imbalanced dataset
@CodeWithAarohi
@CodeWithAarohi 3 ай бұрын
You can perform data augmentation.
@srinidhijala3688
@srinidhijala3688 Жыл бұрын
Thanks a lot mam
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Most welcome 😊
@raehanfelda8956
@raehanfelda8956 Жыл бұрын
I tried yolov8 for some time, and when I want to try tuning hyperparameters using ray tune, it shows an error, even though I followed the steps provided by ultralytics, can you make a video about tuning yolov8 hyperparameters using ray tune?
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Sure
@Icodeswift
@Icodeswift 2 жыл бұрын
Thank you for this amazing tutorial but can you tell me how to implement this model on Android app.. ?
@CodeWithAarohi
@CodeWithAarohi 2 жыл бұрын
Convert your model into tflite and then use that for Android App
@mayurirakhonde7615
@mayurirakhonde7615 Жыл бұрын
Thanks for the excellent explanation. I am having one doubt. What is mAP50 and mAP50-95? What should we measure for accuracy purpose?
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
mAP50 is the mean Average Precision at a 50% IoU (Intersection over Union) threshold. IoU is a measure of the overlap between the predicted bounding box and the ground truth bounding box. A threshold of 50% means that the predicted bounding box is considered a correct detection if it overlaps with the ground truth bounding box by at least 50%. mAP50-95 is the mean Average Precision averaged over the range of IoU thresholds from 50% to 95%, with a step size of 5%.
@abdelhamidazanzal4403
@abdelhamidazanzal4403 2 жыл бұрын
Thanks for the tutorial... when you are programming to make a video on custom image segmentation ?
@CodeWithAarohi
@CodeWithAarohi 2 жыл бұрын
It will be up in 30 minutes 🙂
@CodeWithAarohi
@CodeWithAarohi 2 жыл бұрын
kzbin.info/www/bejne/o6rPlpKag6-dp8k
@nehavora5146
@nehavora5146 2 жыл бұрын
Nice Tutorial.Thank you So much. Can you suggest how to save the name of the objects detected in the image or video in a txt file using yolov8?
@CodeWithAarohi
@CodeWithAarohi 2 жыл бұрын
You can try something like this: import cv2 import numpy as np # Load the YOLOv8 model net = cv2.dnn.readNet("path/to/yolov8.weights", "path/to/yolov8.cfg") # Load the input image or video cap = cv2.VideoCapture("path/to/input.mp4") # Loop over each frame while True: ret, frame = cap.read() if not ret: break # Prepare the frame for inference blob = cv2.dnn.blobFromImage(frame, 1/255.0, (416, 416), swapRB=True, crop=False) net.setInput(blob) outs = net.forward(get_outputs_names(net)) # Loop over each detection for out in outs: for detection in out: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > 0.5: # Extract the bounding box for the detection x, y, w, h = (detection[0:4] * np.array([width, height, width, height])).astype("int") # Open the text file and write the class label and confidence score with open("detections.txt", "a") as f: f.write("{} {:.2f} ".format(class_labels[class_id], confidence)) # Display the frame with detections cv2.imshow("frame", frame) if cv2.waitKey(1) & 0xFF == ord("q"): break cap.release() cv2.destroyAllWindows()
@dhondyash1017
@dhondyash1017 4 ай бұрын
Results saved to runs\detect\train2 I cannot find the runs folder . What Can I do ?
@CodeWithAarohi
@CodeWithAarohi 4 ай бұрын
@@dhondyash1017 you will see the results folder in the directory from where you are running the code.
@dhondyash1017
@dhondyash1017 4 ай бұрын
@@CodeWithAarohi Thank you !
@afriquemodel2375
@afriquemodel2375 Жыл бұрын
is it possible to convert yolov8 to .pb file tensorflow TF2.?
@ameer-alahmadi
@ameer-alahmadi Жыл бұрын
Thanks a lot for your great tutorial . But, can you please explain how to convert yolov8 to tflite model and use it with raspberry pi + coral usb accelerator?
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
Will cover in upcoming videos
@ameer-alahmadi
@ameer-alahmadi Жыл бұрын
@@CodeWithAarohi I'll be so grateful, and I'll appreciate it.
@hamidullahturkmen1782
@hamidullahturkmen1782 2 жыл бұрын
thank you Aarohi, could you make a video integrating yolov8 into the flask app
@CodeWithAarohi
@CodeWithAarohi 2 жыл бұрын
Will try to cover in my upcoming videos
@hamidullahturkmen1782
@hamidullahturkmen1782 2 жыл бұрын
@@CodeWithAarohi thank you🙏
@Rishu_Dakshin
@Rishu_Dakshin Жыл бұрын
Hi, can you please help me with this. I have trained my model for 100 eopchs. by using this 100 ecpochs, how can i train fro +50 epochs(means for 150 epochs). Looking for this videos, but not finding. If you have any already please share me the link na
@CodeWithAarohi
@CodeWithAarohi Жыл бұрын
from ultralytics import YOLO # Load a model model = YOLO('path/to/last.pt') # load a partially trained model # Resume training results = model.train(resume=True)
@Rishu_Dakshin
@Rishu_Dakshin Жыл бұрын
@@CodeWithAarohi Thank you very much, Will check on this code
@Sunil-ez1hx
@Sunil-ez1hx 11 ай бұрын
Nice
@CodeWithAarohi
@CodeWithAarohi 11 ай бұрын
Thanks
@shinwarikhan4677
@shinwarikhan4677 2 жыл бұрын
hello mam! i have an issue .. when i run it on 2 classes after training the class name and confidence level show correctly but when i run it on 5 classes then instead on class name it show the indexes of these class...i check m yaml file everything is perfect... i will be thankful
@CodeWithAarohi
@CodeWithAarohi 2 жыл бұрын
I am not sure what is the issue. Need to see the related files to find out the problem.
YOLOv8 | Image Segmentation On Custom Dataset using YOLOv8
12:47
Code With Aarohi
Рет қаралды 29 М.
Tuna 🍣 ​⁠@patrickzeinali ​⁠@ChefRush
00:48
albert_cancook
Рет қаралды 148 МЛН
Transformers (how LLMs work) explained visually | DL5
27:14
3Blue1Brown
Рет қаралды 4,7 МЛН
YOLO11 Custom Object Detection
27:09
Code With Aarohi
Рет қаралды 20 М.
How do Graphics Cards Work?  Exploring GPU Architecture
28:30
Branch Education
Рет қаралды 3,4 МЛН
What's New in YOLOv8 | Model Deep Dive
11:35
Roboflow
Рет қаралды 40 М.
Generative AI in a Nutshell - how to survive and thrive in the age of AI
17:57
Why Does Diffusion Work Better than Auto-Regression?
20:18
Algorithmic Simplicity
Рет қаралды 453 М.