Cointegration - an introduction

  Рет қаралды 249,113

Ben Lambert

Ben Lambert

Күн бұрын

Пікірлер: 82
@taniaobono978
@taniaobono978 8 жыл бұрын
I normally dont comment on videos, however this was very clear and helpful!! Thank you very much
@mikeysz1972
@mikeysz1972 5 жыл бұрын
i usually do not comment on comments on videos, however i agree!!
@TheGodSaw
@TheGodSaw 8 жыл бұрын
Dude you make the absolute best Econometrics videos it is insane. Last year we had an extremely hard theory of multiple Regression course and your graduate playlist helped a TON. I recommended your videos to all my friends. Keep up the good work!
@chariezwane3981
@chariezwane3981 3 жыл бұрын
Thank you! This topic made no sense until I gave this a try.
@jakobforslin6301
@jakobforslin6301 4 жыл бұрын
Best teacher out there, thank you for all the clarity you bring
@richardwatson3484
@richardwatson3484 5 жыл бұрын
Great explanation - for a newcomer to econometrics this is is gold
@SpartacanUsuals
@SpartacanUsuals 10 жыл бұрын
Hi Prathana, If a variable has no unit roots it is always 'cointegrated' in a sense with other I(0) variables. Hope that helps! Ben
@sebastiankuhnert3639
@sebastiankuhnert3639 9 жыл бұрын
Great video!!! - thank you!! Made reading some articles a lot easyier. I read "Some Properties of TIME SERIES DATA..." by Granger (1981), where he defines: X_t = I(d) : X_t = a(B)e_t, where (e_t) ~ WN(0, sigma^2), B is the Lagoperator, a(B) = (1-B)^{-d}*a'(B), where a'(B) has no poles and roots in z=0. I don't understand the concept of the introduced "linear filter" a(B). Is it just a linear function?
@superstarem
@superstarem 7 жыл бұрын
totally awesome thankyou. im looking at options for my doctorate to test for causality between FDI, Exports and GDP so cointegration and causality models are my jam lately but this has been very useful.
@홍성의-i2y
@홍성의-i2y Жыл бұрын
Usually, it is banned for us to do regression when both Y and X are I(1), because it causes spurious regression. However, co-integration is devised so that we can discern such cases when regression is allowed. In cases they are both I(1), Y_t - \beta * X_t being I(0) means that they share the same pattern (up to constant multiplication) like the downward-dent case in 4:55. Then it is reasonable to think that Y_t and X_t share some sort of correlation, and thereby justifies the use of regression.
@nackyding
@nackyding 7 жыл бұрын
Goddman! Thank you. Thank you, thank you, thank you! Your series has been god send for me. Thank you again!
@louismarcelmpundu8576
@louismarcelmpundu8576 2 жыл бұрын
how can I say thank you for this helpful video? Thank you to make plain as a day what cointegration really mean in simple words!
@carlsousa
@carlsousa 9 жыл бұрын
Great explanation, I always found econometrics hard to understand and you make it super simple, maybe I always had bad econometrics professors. Thanks a lot.
@johnsteedman7937
@johnsteedman7937 2 жыл бұрын
I have the book but still found this useful. An extra column for the denominator might make things crystal clear even though I can see that the book does explain
@ciaranbarrett5254
@ciaranbarrett5254 6 ай бұрын
Best explanation I have ever heard!
@shihabuddintareq5151
@shihabuddintareq5151 4 жыл бұрын
A simple but significant explanation
@bang_goo
@bang_goo 4 жыл бұрын
Very simple and clear. It helps me a lot. Thank you so much!
@subarkahsubarkah969
@subarkahsubarkah969 8 жыл бұрын
You are the best, Ben!! I learn a lot from you. Thanks.
@a.moizmaner2504
@a.moizmaner2504 8 ай бұрын
Years later still benefiting GBU!
@pelephantzoo
@pelephantzoo 10 жыл бұрын
Your videos are awesome! Keep it up! You're helping a lot of people :)
@xphilster
@xphilster 2 жыл бұрын
Your videos are still so useful, thank you Ben!
@katerinamilaberska
@katerinamilaberska 6 жыл бұрын
Perfect video, now I understand what a cointegration is! :)
@MuhammadAsim-fy1qy
@MuhammadAsim-fy1qy 3 жыл бұрын
Very very clear I must appreciate sir. Thank you so much
@TheDominock
@TheDominock 3 жыл бұрын
Thank you very much, you are glorious! Could you please provide me with a title of a journal article/name of the authors where authors explain the case of using non-stationary variables of order 1 being regressed on each other? I am having difficulties in finding such a journal.
@bartas8891
@bartas8891 4 жыл бұрын
Reall good explanations. Thank you for sharing your knowledge !
@ssrouji4507
@ssrouji4507 4 жыл бұрын
Thank you Ben, excellent !
@VainCape
@VainCape 4 жыл бұрын
another way to put it: there exists a linear combination of yt, xt that is I(0)
@JugaadTech
@JugaadTech 4 жыл бұрын
Great explanation, Just could not understand I(0) or I(1) part, If someone can point me in right direction for this, that'll be great
@fatimazahramoussaid350
@fatimazahramoussaid350 3 жыл бұрын
hello, does beta can be interpreted as the speed of ajustement? is it what we called the ECT( eroor correction term)?
@abioduntaiwo8443
@abioduntaiwo8443 8 жыл бұрын
Hi ben, please what is the weakness of the ARDL method of co-integration.
@BansheeX
@BansheeX 3 жыл бұрын
Thank u Ben Lambert
@theochhn7514
@theochhn7514 6 жыл бұрын
GREAT explanation! It is very clear!
@wenchaowu6204
@wenchaowu6204 7 жыл бұрын
Great video. Very intuitive.
@pranavkishorbaviskar5688
@pranavkishorbaviskar5688 6 жыл бұрын
Crisp and clear thanks sir
@daanw
@daanw 5 жыл бұрын
Bitcoin stock-to-flow and price?
@modiallo968
@modiallo968 5 жыл бұрын
Yessir 😎😎😎
@eavjones
@eavjones 9 жыл бұрын
I'm actually in the life sciences, not economics, but I analyse data from time-lapse experiments. I am looking at a relationship between an X_t and a Y_t in my time series. Do you think I could apply co-integration/Dickey-Fuller to this? I actually have 3 different time-lapse experiments (with about 10 times points per experiment). Can I just analyse all the data together? By the way, your movies are amazing. You make difficult statistical knowledge very accessible.
@meisterthea
@meisterthea 2 жыл бұрын
If beta is a scalar value then surely it would just raise or lower X(t). Why would it create a constant spread with Y(t)?
@itthipong
@itthipong 10 жыл бұрын
Dear Mr.LamBert. Suppose that I have more than one independent variable say x1 and x2. What if I find that y and x1 are I(1) but x2 is I(0)? Can they be cointegrated despite their different integration orders? Am I allowed to estimate the ECM model between y x1 and x2? Could you please explain to me? Regards.
@SpartacanUsuals
@SpartacanUsuals 10 жыл бұрын
Hi, good question. Yes, in theory there is no problem here, so long as y and x1 are cointegrated (in the presence of x2). However, I would be very careful about doing this sort of regression for fear of it demonstrating a spurious relationship between variables. Best, Ben
@lory198
@lory198 8 жыл бұрын
hi Ben, your videos are really great! Just one question concerning the video: if there exists a b such that y_t-bx_t is stationnary. Why don't we say that there exists a and b such that ay_t-bx_t is stationnary (or said differently: why can we always assume that a=1?)
@malikaallali2924
@malikaallali2924 9 жыл бұрын
Great video thank you so so much I need some information about cointegration thanks a lot that's great
@sara5555555555
@sara5555555555 7 жыл бұрын
Awsome vid! Just have one question regarding I(1). I get that it says that if you differentiate it once then it becomes stationary, am I right in assuming that I(1) in the vid is still "undifferentiated" and non stationary still? If they were both differentiated once then both would be stationary and we wouldn't have a problem, would we? Or am I wrong?
@lrozenwater
@lrozenwater 6 жыл бұрын
Yes, they show the levels of y_t and x_t, not the first-differenced variables
@josefinaramos6534
@josefinaramos6534 2 жыл бұрын
what happens if 2 series do not look like they cointegrate but when looked at in first differences you can see they do'?
@notonlygeek
@notonlygeek 4 жыл бұрын
Hi, trying to do french subtitles, at 1:44 he say " witch I(1) .... another" I don't succeed find missing word nor understand the meaning. Many tks for help.
@muhammadirfanislami818
@muhammadirfanislami818 3 жыл бұрын
Perhaps its nonstationer at level
@dhruvkotecha8843
@dhruvkotecha8843 5 ай бұрын
Very helpful, thank you!
@fatimazahramoussaid350
@fatimazahramoussaid350 3 жыл бұрын
in the first example where the two series aren't cointegrated because of the two random walks, can we interpret the random walk as breakpoints ??
@fatimazahramoussaid350
@fatimazahramoussaid350 3 жыл бұрын
and the correct them by adding dummy variables to the model ?
@fatherle
@fatherle 2 жыл бұрын
the best expaination
@fazoo1000
@fazoo1000 5 жыл бұрын
Very Much help ful Video
@joebedford4157
@joebedford4157 7 жыл бұрын
Thanks Ben.
@PrarthanaRaviKumar
@PrarthanaRaviKumar 10 жыл бұрын
Thank you for these videos :) :) I was wondering, if a variable has no unit roots, does it mean it cant be cointegrated with any variable??
@aishiaratrika
@aishiaratrika 3 жыл бұрын
If it doesn’t have unit root, this indicates that the time series variable is stationary. So it can't be cointegrated since conintegration involves two non-stationary processes.
@josuecosta894
@josuecosta894 5 жыл бұрын
god bless you!! you helped me a lot, thanks!!
@chaozhang5864
@chaozhang5864 10 жыл бұрын
very helpful! thx Ben.....
@EduardoGarcia-if2kv
@EduardoGarcia-if2kv 4 жыл бұрын
I am hooked!!!
@yangliu5652
@yangliu5652 7 жыл бұрын
Very useful! Thank a lot!
@ivankissiov
@ivankissiov 2 жыл бұрын
Thank you!!!
@chrislam1341
@chrislam1341 10 жыл бұрын
but what is the meaning of I(1) and I(0), i didnt really catch it..
@SpartacanUsuals
@SpartacanUsuals 10 жыл бұрын
Hi Chris, I(1) means that you need to take the 1st difference of a series in order to make it stationary. I(0) means that the series is already stationary. Hope that helps! Ben
@hassanaber392
@hassanaber392 5 жыл бұрын
very helpful..thanx
@KeddingtonKKB_Official
@KeddingtonKKB_Official 4 жыл бұрын
What's I(1)?
@Anna-zi6fy
@Anna-zi6fy 7 жыл бұрын
Hi Ben! Thanks for the video! What is I(1) here?
@radufffp
@radufffp 7 жыл бұрын
The date contains one (1) unit root. This means the data, in order to be stationary, has to be differentiated one (1) time.
@sara5555555555
@sara5555555555 7 жыл бұрын
But then we are supposed to assume that the series have been differetentiated yet? Otherwise the data would be stationary right?
@flamingflamingo4021
@flamingflamingo4021 3 жыл бұрын
What's I(1) / I(0) here?
@shaguftashabbar4982
@shaguftashabbar4982 8 жыл бұрын
very helpful!
@subhransusekhar289
@subhransusekhar289 7 жыл бұрын
Why we call the non stationary series a I(1)?
@mohdbahakim
@mohdbahakim 6 жыл бұрын
I(1) means they have a unit root meaning they are not stationary
@mohdmaudehero7602
@mohdmaudehero7602 7 жыл бұрын
what does the I(1) or I(0) in this video denote thank you
@mohdmaudehero7602
@mohdmaudehero7602 7 жыл бұрын
i get it
@ben73010
@ben73010 6 жыл бұрын
Thanks for this
@zoozolplexOne
@zoozolplexOne 2 жыл бұрын
cool !!!
@ahmedtrabelsi3589
@ahmedtrabelsi3589 5 жыл бұрын
i love you
@sport8133
@sport8133 2 жыл бұрын
velly velly noice!
@thaitazzz
@thaitazzz 10 жыл бұрын
what is formula of beta ?
@noueruz-zaman7894
@noueruz-zaman7894 6 жыл бұрын
I have these for my masters in finance program and in class I don't get anything, it seems like I am Chinese. .lol
@홍성의-i2y
@홍성의-i2y Жыл бұрын
en.wikipedia.org/wiki/Order_of_integration definition of I(d)
@Sydney_Anuyah
@Sydney_Anuyah 2 жыл бұрын
I normally dont comment on videos, however this was very clear and helpful!! Thank you very much
Cointegration tests
6:29
Ben Lambert
Рет қаралды 144 М.
Error correction model - part 1
10:02
Ben Lambert
Рет қаралды 151 М.
I Turned My Mom into Anxiety Mode! 😆💥 #prank #familyfun #funny
00:32
Wait for the last one 🤣🤣 #shorts #minecraft
00:28
Cosmo Guy
Рет қаралды 25 МЛН
Real Man relocate to Remote Controlled Car 👨🏻➡️🚙🕹️ #builderc
00:24
Trick-or-Treating in a Rush. Part 2
00:37
Daniel LaBelle
Рет қаралды 32 МЛН
Granger Causality : Time Series Talk
8:49
ritvikmath
Рет қаралды 78 М.
Integration, Cointegration, and Stationarity
21:23
Quantopian
Рет қаралды 55 М.
Spurious regression
5:27
Ben Lambert
Рет қаралды 71 М.
Time Series Talk : Stationarity
10:02
ritvikmath
Рет қаралды 288 М.
Cointegration - Engle and Granger method in EViews
28:34
JDEConomics
Рет қаралды 41 М.
8. Time Series Analysis I
1:16:19
MIT OpenCourseWare
Рет қаралды 402 М.
I Turned My Mom into Anxiety Mode! 😆💥 #prank #familyfun #funny
00:32