The qualitative difference between stationary and non-stationary AR(1)

  Рет қаралды 236,969

Ben Lambert

Ben Lambert

Күн бұрын

Пікірлер: 55
@SpartacanUsuals
@SpartacanUsuals 11 жыл бұрын
Hi, glad to hear you liked it. I will add that suggestion to my list! Thanks, Ben
@JesseMaurais
@JesseMaurais 10 жыл бұрын
I just mocked up a similar simulation in R, but I animated it, increasing rho by 0.01 from 0 to 1 in each frame, at 2 frames per second, using the same white noise data. Watching how the data changes makes a lot more sense now. Thanks for the videos.
@SpartacanUsuals
@SpartacanUsuals 10 жыл бұрын
Hi Jesse, many thanks for your comment and effort reproducing the above in R. Would you mind sharing it below here? I think some people would potentially be interested to reproduce above in R. Best, Ben
@JesseMaurais
@JesseMaurais 10 жыл бұрын
z = rnorm(1000) gen = function(rho) { x = numeric(length(z)) x[1] = z[1] for (i in 2:length(z)) { x[i] = rho*x[i-1] + z[i] } x } display = function(rho) { x = gen(rho) plot(x, main=as.character(rho)) lines(x) } for (it in 1:100) { display(it/100) Sys.sleep(0.5) }
@SpartacanUsuals
@SpartacanUsuals 10 жыл бұрын
Jesse Maurais That's great. Many thanks for this! Am sure it will be useful. Best, Ben
@IanBorgessen
@IanBorgessen 6 жыл бұрын
Thanks!
@tonyfang4970
@tonyfang4970 Жыл бұрын
@@SpartacanUsuals Sketched the same thing in Python, hope it helps! import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt # define each datapoint as a normal r.v. def generate_datapoint(params): mu = params[0] sigma = params[1] return np.random.normal(mu,sigma) # Set the number of datapoints T = 100 B = pd.Series(index=range(T)) B.name = 'B' for t in range(T): # Now the parameters are dependent on time # Specifically, the mean of the series changes over time params = (t * 0.1, 1) B[t] = generate_datapoint(params) plt.plot(B) plt.xlabel('Time') plt.ylabel('Value') plt.legend(['Series B']);
@tonyfang4970
@tonyfang4970 Жыл бұрын
Sketched the same thing in Python, hope it helps! import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt # define each datapoint as a normal r.v. def generate_datapoint(params): mu = params[0] sigma = params[1] return np.random.normal(mu,sigma) # Set the number of datapoints T = 100 B = pd.Series(index=range(T)) B.name = 'B' for t in range(T): # Now the parameters are dependent on time # Specifically, the mean of the series changes over time params = (t * 0.1, 1) B[t] = generate_datapoint(params) plt.plot(B) plt.xlabel('Time') plt.ylabel('Value') plt.legend(['Series B']);
@debashisbanerjee260
@debashisbanerjee260 2 жыл бұрын
Amazingly explained. Probably the best video on this topic on internet.
@harshitnarula8449
@harshitnarula8449 Жыл бұрын
Wow this is really helpful..ive been really strugling with econometrics at uni..but these videos are so well explained! Thanks so much..Cheers!
@MrScattterbrain
@MrScattterbrain 4 жыл бұрын
Ben, thank you so much for these videos on time series. And, in particular, for this one. This answered all little confusions and doubts that I used to have.
@asadkhanbb
@asadkhanbb 5 жыл бұрын
@Ben Lambert, I got addicted to your videos on Econometrics. Thanks
@alvise2165
@alvise2165 4 жыл бұрын
GREAT Explanation! now is all more clear!
@luistato7437
@luistato7437 4 жыл бұрын
Ben, you are absolutely mental. I really appreciate this, thanks so much!
@ThuHuongHaThi
@ThuHuongHaThi 3 жыл бұрын
I basically understand this as: the closer rho is towards 1, the more time it takes for the time series to return to its mean
@ljw1419
@ljw1419 9 жыл бұрын
Really helps, best Time Series Econometrics videos on youtube, thanks !
@elfadlaouielfadel932
@elfadlaouielfadel932 6 жыл бұрын
you have explained this course very well.thank you very much.
@Hatorye
@Hatorye 4 жыл бұрын
Yet another amazing video. Thanks, Benny
@johncharles3907
@johncharles3907 6 жыл бұрын
Can you explain the math again very slowly and clearly? :) Good illustrations!
@rupikakhanna306
@rupikakhanna306 11 жыл бұрын
It was a very useful video for starters. I was wondering if you could post something on ADF and (weak form) stock market efficiency tests.
@Sam-gn6og
@Sam-gn6og 5 жыл бұрын
The explanation of the ARX model you gave is very simplistic, would make a Control Engineer cringe. There is a mathematical stability theory behind the difference equations of the parametric models (ARX.....ARIMAX) Econometrists hardly know about
@Sam-gn6og
@Sam-gn6og 5 жыл бұрын
@Peripo They do...if their analysis is to be taken seriously.
@arthvini02
@arthvini02 Жыл бұрын
Thanks a lot for this video!
@mamadoudiaby4474
@mamadoudiaby4474 3 жыл бұрын
Hello sir, I am studing the debt sustainability of WAEMU countries. It is said in littterature that when dependent variable which is primary surplus and independent variable which is debt are both stationary this mean that there is sustainability. In my case both are not stationary and this signals unsustainability of debt. For my GLS regression I am wondering wether I should take those variables in level or differenced them first? Thanks
@schnickerfritzel
@schnickerfritzel 8 жыл бұрын
Hi Ben! thank you for posting this video, helps me clear up my confusion :) Although I do wanna clarify one thing: so does this mean that non stationary AR(1) process is synonymous with random walk process? and it also follows a unit root?
@MootBoogie
@MootBoogie 5 жыл бұрын
what is Rho in this context? like how is it defined? wow this makes so much sense now, thanks!
@zurzakne-etra7069
@zurzakne-etra7069 Жыл бұрын
think it's called the autoregressive coefficient...
@Konzor
@Konzor 8 жыл бұрын
hey ben, Very helpful videos! Thanks for that! But i got a question: is there any playlist which cover the hole time series stuff? Can't find a playlist/course on you channel.
@saulmirandaaliaga
@saulmirandaaliaga 6 жыл бұрын
Love your videos, mate! Thank you so much!
@hedgehog_fox
@hedgehog_fox 6 жыл бұрын
Great Matlab demo!
@alexgold432
@alexgold432 7 жыл бұрын
Very good video. The et in the non stationary equation is IID as is the case with the stationary one?
@shreyajain8028
@shreyajain8028 7 жыл бұрын
If there are 2independent and 1 dependent variable in a regression and DF test needs to be applied and the significance of the two independent variables is 0 and for dependent variable it is 0.1156. Which of the variables are having unit roots?
@neodrone1
@neodrone1 9 жыл бұрын
Great explanation. Thanks!
@alexlo6393
@alexlo6393 6 жыл бұрын
this is a great video!
@nancyaliaga7079
@nancyaliaga7079 6 жыл бұрын
You legend! Thank you very much for all your videos!
@pedroluque7371
@pedroluque7371 7 жыл бұрын
Hi Ben, thanks for your videos!
@javierromera1997
@javierromera1997 3 жыл бұрын
Thank you Ben
@kpatel306
@kpatel306 9 жыл бұрын
Hi Ben Thanks a lot fort this video. I have a query related to statiority test - do we required series to be stationary while doing the linear regression forecasting? e.g. forecasting based on economic variables. Thanks KP
@volkanky
@volkanky 4 жыл бұрын
I have a question please help me ; I have a export data but ı reach the trend stationary process, so can I use this data for VAR analysis? how can I transform the trend stationary process to sationary process
@jacinthdavid1122
@jacinthdavid1122 8 жыл бұрын
Can someone explain how we got the conditional means for AR(1) process? Really confused about that.
@Institute.research
@Institute.research 5 жыл бұрын
need answer if some variables are at level and others are the first difference so what I can do so can go at first difference or at level and how the equation will
@becoruthia
@becoruthia 9 жыл бұрын
Thank you, explained a lot.
@louisbatalha8912
@louisbatalha8912 5 жыл бұрын
That is great Sir
@graceliao5978
@graceliao5978 6 жыл бұрын
you're the best
@justinlundgren50
@justinlundgren50 6 жыл бұрын
Brilliant! Thanks!
@oscarlu9919
@oscarlu9919 4 жыл бұрын
I think 4:28-4:41 is some kind of intuition to understand the magnitude of p
@dudeB15
@dudeB15 4 жыл бұрын
thank you ben
@youngbin0200
@youngbin0200 6 жыл бұрын
You re just amazing
@gabriellegall8278
@gabriellegall8278 7 жыл бұрын
thank you so much
@Albert-cs1uh
@Albert-cs1uh 11 жыл бұрын
really helpfull!
@urabi3tube
@urabi3tube 8 жыл бұрын
I have a question it might be silly but it's very important, why when we analyse time series we use AR model or MA Arima in others words why we use the lagged values as explanatory variables??? please be advice :)
@AngshumanPalKolkata313
@AngshumanPalKolkata313 4 жыл бұрын
You started with X(0) = 0?
@larsahnlandnordfors9170
@larsahnlandnordfors9170 8 жыл бұрын
What is rho?
@tempvariable
@tempvariable 5 жыл бұрын
thanks
@nabeelsyed5228
@nabeelsyed5228 7 жыл бұрын
Hey Ben i have an exam next wednesday, its basically a stats exam and i have no idea what is going on in it, my prof doesnt know how to teach and i was hoping you could help me out please respond, my exam is covering a couple chapters, ill send u the topic when i get my textbook
Random walk not weakly dependent
3:00
Ben Lambert
Рет қаралды 25 М.
Cointegration - an introduction
6:11
Ben Lambert
Рет қаралды 249 М.
UFC 308 : Уиттакер VS Чимаев
01:54
Setanta Sports UFC
Рет қаралды 934 М.
ROSÉ & Bruno Mars - APT. (Official Music Video)
02:54
ROSÉ
Рет қаралды 285 МЛН
Yay, My Dad Is a Vending Machine! 🛍️😆 #funny #prank #comedy
00:17
The Singing Challenge #joker #Harriet Quinn
00:35
佐助与鸣人
Рет қаралды 15 МЛН
Time Series Talk : Stationarity
10:02
ritvikmath
Рет қаралды 288 М.
Deterministic vs stochastic trends
5:07
Ben Lambert
Рет қаралды 124 М.
Unit Roots : Time Series Talk
13:53
ritvikmath
Рет қаралды 152 М.
Time series and first differences
8:13
Matthew E. Clapham
Рет қаралды 38 М.
Weak Stationarity vs Strong Stationarity
7:34
Justin Eloriaga
Рет қаралды 6 М.
Time Series Talk : Autocorrelation and Partial Autocorrelation
13:16
Time Series Talk : White Noise
7:36
ritvikmath
Рет қаралды 173 М.
Non-Stationarity and Differencing
14:35
Justin Eloriaga
Рет қаралды 6 М.
UFC 308 : Уиттакер VS Чимаев
01:54
Setanta Sports UFC
Рет қаралды 934 М.