(for *mobile* users) 00:15 Introduction 00:34 Hamiltonian and position operators in QM 01:06 Explicit forms of kinetic energy operator T and position operator x 01:30 Use of property of commutator to write commutator as sum of two commutators 02:04 Since position commutes with potential energy function V, second commutator equals 0 02:16 Definition of commutator 02:35 Addition of dummy argument Ψ 02:59 Grouping of operators 03:15 Replacement of "first" (rightmost) operator by explicit form 04:05 Replacement of "second" (leftmost) operator by explicit form 04:40 Pull constants in front of derivatives 05:53 Use fact that the second derivative is the first derivative of the first derivative 06:05 Use product rule to find first derivative 07:22 Differentiate second time 08:01 Combine like terms 08:15 Cancel additive inverses 08:38 Cancel factor of 2 08:52 Use fact that 𝘪 × 𝘪 = -1 09:30 Use explicit form of momentum operator in QM Color-coded, step-by-step calculation of the commutator of the Hamiltonian operator (in one dimension) and position. Don't forget to like, comment, share, and subscribe!
@brittanyh1228 Жыл бұрын
Nice video! Great job!
@lseinjr1 Жыл бұрын
Thank you very much!
@TheOmega11024 жыл бұрын
Thank you very much for this Video! Great and easy explanation.
@lseinjr14 жыл бұрын
Glad it was helpful!
@nurra45154 жыл бұрын
Thank you so much!! This really helps me a lot 😊
@lseinjr14 жыл бұрын
You're so welcome!
@Jekku19873 жыл бұрын
Thank you! Excellent video.
@lseinjr13 жыл бұрын
Glad it was helpful!
@SMc-12352 жыл бұрын
Thanks. I was wandering why commutation between position 'x' & potential 'V' is zero. But now I've got the answer.
@arnabghosh25754 жыл бұрын
Thank you so much sir. It really helps a lot💖
@lseinjr14 жыл бұрын
You're welcome 😊
@muzammilsaeed3214 жыл бұрын
thank you soo much sir
@Boooommerang3 жыл бұрын
Thanks a lot!
@hmena99343 жыл бұрын
What would you consider is the interpretation of being able to obtain the momentum operator from the commutator of the Hamiltonian and position operator?
@lseinjr13 жыл бұрын
We have a number of interpretations of the value of the commutator in pure math. In quantum chemistry, there is one important interpretation of the value of the commutator: if the commutator is 0, the two operations commute; if the commutator is NOT 0, then the two operations DON'T commute. If two operations commute, it means (in quantum chemistry) that we could know both, simultaneously, to perfect precision. On the other, if the two operations DON'T commute, then the Heisenberg Uncertainty Principle applies. Momentum (p) and position (x) do not commute, so that Δ x Δ p ≥ ℏ/2, whereas if they DID commute, Δ x Δ p ≥ 0.
@tomstalley31794 жыл бұрын
thanks!
@lseinjr14 жыл бұрын
Welcome!
@Ither1023 Жыл бұрын
thanks :}
@rflorezablan14 жыл бұрын
Thanks!
@a-factoracademy3 жыл бұрын
Thank you so much ... Actually how can find the commutator of Hamiltonian and a function of coordinate, q, and p
@lseinjr13 жыл бұрын
The commutator is defined as a binary operator. Why are you trying to take the commutator of three functions simultaneously?
@a-factoracademy3 жыл бұрын
@@lseinjr1 I saw a question like that and I was worried too.. I don't know if I can share the question with you!
@lseinjr13 жыл бұрын
If the function of position q and momentum p is a LINEAR function, then you might be able to use one of the commutator identities derived here: kzbin.info/www/bejne/mWO0pmqoqpt_a9E
@مفكال2 жыл бұрын
So they don’t commute
@lseinjr12 жыл бұрын
- and so, by the Heisenberg Uncertainty Principle, there are limits to how well we can know the values of each at the same time.