Convergence of the Taylor Series of sin(x)

  Рет қаралды 11,075

JCCCmath

JCCCmath

Күн бұрын

Пікірлер: 13
@InspirationIsFree
@InspirationIsFree 6 жыл бұрын
Thank you! This really cleared up a lot of things for me - i didn't really know what convergence meant after learning taylor polynomials and this makes it clear that it's concerned with whether the approximation eventually becomes identical to the function. I've subscribed and I hope you keep making math videos!
@JCCCmath
@JCCCmath 5 жыл бұрын
Glad the video helped. Let me know if there is anything else that should be added.
@adityaprasad465
@adityaprasad465 5 жыл бұрын
@@JCCCmath Thanks for an awesome video! One thing that might be useful: a real analytic function is one that equals its Taylor series in a neighborhood of every point. This is easy to confuse with the idea that the Taylor series converges to the function everywhere (as with sine). It could be worthwhile to explain the difference.
@izzygrandic
@izzygrandic 2 жыл бұрын
This is a great video and you are a great teacher.
@JCCCmath
@JCCCmath 2 жыл бұрын
Thank you. Glad you liked it.
@lel4159
@lel4159 3 жыл бұрын
Thank you for the video. I think there is a small mistake in the first formula though: it is "n" instead of "n+1" in the exponent of (-1). Best regards
@JCCCmath
@JCCCmath 3 жыл бұрын
Good catch. I fixed that in the version I use internally for my classes, but have not fixed it here. I will add something in the description.
@kartik303
@kartik303 2 жыл бұрын
Thank you sir
@dume85
@dume85 5 жыл бұрын
your backwards handwriting is amazing
@fadybitar6433
@fadybitar6433 5 жыл бұрын
he doesn't write backwards lmaooo.. he simple writes the normal way and then flips the image
@dume85
@dume85 5 жыл бұрын
@@fadybitar6433 nah you're just jealous that you can write backwards with your left hand like that.
@barancel11
@barancel11 5 жыл бұрын
it is a very good explanation indeed, however it is too trivial. a more difficult problem could be used. thankss
@JCCCmath
@JCCCmath 5 жыл бұрын
Typically in our Integral Calculus course we focus on e^x, sin(x), cos(x), and the binomial series for our applications, so that is why I proved sin(x) and e^x. We usually leave the convergence of the others to exercises, so I i didn't want to spoil that. Glad you enjoyed.
Convergence of the Taylor Series of e^x
9:12
JCCCmath
Рет қаралды 3,7 М.
The geometric interpretation of sin x = x - x³/3! + x⁵/5! -...
22:02
-5+3은 뭔가요? 📚 #shorts
0:19
5 분 Tricks
Рет қаралды 13 МЛН
24 Часа в БОУЛИНГЕ !
27:03
A4
Рет қаралды 7 МЛН
«Жат бауыр» телехикаясы І 30 - бөлім | Соңғы бөлім
52:59
Qazaqstan TV / Қазақстан Ұлттық Арнасы
Рет қаралды 340 М.
Line Integrals Are Simpler Than You Think
21:02
Foolish Chemist
Рет қаралды 147 М.
A Brilliant Limit
16:58
blackpenredpen
Рет қаралды 1,4 МЛН
I Helped 2,000 People Walk Again
15:31
MrBeast
Рет қаралды 26 МЛН
Error Bounds for Taylor Polynomial Approximations
11:41
JCCCmath
Рет қаралды 55 М.
Taylor series | Chapter 11, Essence of calculus
22:20
3Blue1Brown
Рет қаралды 4,3 МЛН
Approximating Definite Integrals Using Taylor Series
9:24
JCCCmath
Рет қаралды 26 М.
The Formula for Taylor Series
10:02
blackpenredpen
Рет қаралды 171 М.
-5+3은 뭔가요? 📚 #shorts
0:19
5 분 Tricks
Рет қаралды 13 МЛН