I don't know how this 1 hr passed in reel era and now I am looking for more such great content.
@Coconut-Crusted-French-Toast5 күн бұрын
Thank you for the detailed walkthrough. Very helpful.
@GGWPTrader8 күн бұрын
Mad respect sir.. i'm gonna having fun & learn so much from your channel..
@windmaple8 күн бұрын
Thank you for making this video available!
@Artem-c1p9q3 күн бұрын
Excellent work! Love it! ❤❤❤
@ai-by-hand2 күн бұрын
Thank you! 😊
@maycodes2 күн бұрын
Thank you professor ❤❤❤
@dongwoo1132 күн бұрын
감사합니다!
@camille-t7z7 күн бұрын
amazing content, thanks a lot!!!
@mueezurrehman85728 күн бұрын
Really informative and detailed. Thanks.
@ihcnehc7 күн бұрын
Thank YOU!
@pastrop20037 күн бұрын
vere well done, thank you!
@mohsinkhalid23758 күн бұрын
Professor what about the fine-tuning part? How RL is utilized to fine-tune the model.
@anilshinde80257 күн бұрын
Great lecture Professor. Would like to know role of Group Relative Policy optimization role in DeepSeek
@airesearch20249 күн бұрын
Could you create a play list for this course so we can keep track of
@fintech13787 күн бұрын
how to order the book
@deeal5 күн бұрын
why do we do this dimension reduction? from 5=> 4?
@zeeshanashraf45024 күн бұрын
@deeal tldr explanation - reducing dimensions increases the speed of training and inference. It also reduces the size of the model. 5 is the model size/hidden dimension(H.D), 4 is the per head dimension(P.H.D) and 6 is the Context Length(C.L). If the weight matrix does not reduce the dimensionality , it's size will be (H.D x H.D) instead of current dimension (P.H.D x P.H.D). This will result in larger number of parameters being learnt. Also, if dimensionality is not reduced, K, V, Q matrices will also have size (H.D X C.L) which is much larger than (PHD X CL). Multiplying such large matrices is very expensive, approximately O(n^3). So smaller matrices are used.
@deeal4 күн бұрын
Thanks for the explanation, much appreciated. Interesting, so why not start with that input size to begin with? I understand the input are the embedding right? I am missing something 😅