Thank you po Coach Lyka for sharing your knowledge and expertise! Gonna prepare for the upcoming CSE!!
@sophiame18176 ай бұрын
Ang galing mang hula kaysa mag compute hahaha. I’m 43 and appreciate ko talaga to ❤❤❤
@zhyfanny5 ай бұрын
Thank you so much maam lyqa God bless you po sayu sana tuloy tuloy ang pag tulong mo sa iba .
@KitJohnObay6 ай бұрын
Solid talaga ng oras pag manunuod ng video mo coach🫡
@jessellomerio95726 ай бұрын
Watching from sorsogon❤
@bleuvlad6 ай бұрын
love and hate relationship sa number series, sequence 🤣🤭😇💓. Sana po 🙏🏻
@andresanjose75996 ай бұрын
Thank you, Coach! ❤
@aserpayos37356 ай бұрын
Hopefully magkacollab lahat ng nagtuturo ng CSC daming comparison ng iba na babasa ko na kesyo masmagaling magturo si ganito etc nakakaheart break lng. Sana kung magkaroon man magcollab lahat ng nagtuturo ng CSC content creator. LEONALYN, TEAM LYCA, BRAINBOX ❤️ Same lang iniaim ng mga to makatulong at makapasa lahat ❤️
@boyetrecario771321 күн бұрын
Mam lyqa gud pm po
@ElenaDumangid6 ай бұрын
Good evening po mam From.iligan city
@JenDsja6 ай бұрын
Let the measure of angle A be \( x \) degrees. The complement of angle A is \( 90 - x \) degrees. According to the problem, angle A is 15 degrees more than twice its complement. This gives us the equation: \[ x = 2(90 - x) + 15 \] Let's solve for \( x \): \[ x = 180 - 2x + 15 \] \[ x = 195 - 2x \] \[ x + 2x = 195 \] \[ 3x = 195 \] \[ x = \frac{195}{3} \] \[ x = 65 \] So, the measure of angle A is 65 degrees.
@JenDsja6 ай бұрын
Let the measure of angle B be \( y \) degrees. The complement of angle B is \( 90 - y \) degrees, and the supplement of angle B is \( 180 - y \) degrees. According to the problem, the complement of angle B is 16 degrees less than half of its supplement. This gives us the equation: \[ 90 - y = \frac{1}{2}(180 - y) - 16 \] Let's solve for \( y \): \[ 90 - y = 90 - \frac{y}{2} - 16 \] Simplify the right side of the equation: \[ 90 - y = 74 - \frac{y}{2} \] To eliminate the fraction, multiply every term by 2: \[ 2(90 - y) = 2(74 - \frac{y}{2}) \] \[ 180 - 2y = 148 - y \] Combine like terms: \[ 180 - 148 = 2y - y \] \[ 32 = y \] So, the measure of angle B is 32 degrees.
@bleuvlad6 ай бұрын
💗🌈 Iloilo 😇🙏🏻🙏🏻🙏🏻
@joelajacol78406 ай бұрын
Good evening po..newbie sa page
@joelajacol78406 ай бұрын
From biliran here🥰
@Liza-c2w6 ай бұрын
Good evening po! Liza from san jose, dinagat islands
@KhrizaMarieGarcia6 ай бұрын
Good evening ma'am From: Iloilo
@vladimirtrinidad38976 ай бұрын
thankyou po maam lyqa
@ReyMolero-ci1wx6 ай бұрын
Good evening po from palo leyte
@JenDsja6 ай бұрын
Let the measure of the first angle be \( x \) degrees. The second angle is twice the first, so it is \( 2x \) degrees. The third angle is thrice the first, so it is \( 3x \) degrees. Let the measure of the fourth angle be \( y \) degrees. The sum of the angles in any quadrilateral is \( 360 \) degrees. Therefore, we have: \[ x + 2x + 3x + y = 360 \] Simplifying, we get: \[ 6x + y = 360 \] Since we are only given the relationship between the first three angles, we need to make an assumption about the fourth angle in order to solve for \( x \). If we assume the fourth angle is equal to the first angle (i.e., \( y = x \)), we can solve the equation: \[ 6x + x = 360 \] \[ 7x = 360 \] \[ x = \frac{360}{7} \] \[ x \approx 51.43 \] So, the measure of the first angle is approximately \( 51.43 \) degrees. If the assumption about the fourth angle being equal to the first angle isn't correct, we'd need more information to determine the exact measure of the first angle.