Complex Exponential Function 1

  Рет қаралды 97,346

DaveAcademy

DaveAcademy

Күн бұрын

Пікірлер: 26
@mohfa1806
@mohfa1806 Жыл бұрын
Old but gold....i salute you sir
@payaparapasu
@payaparapasu Жыл бұрын
perfect video
@BrodyPianist
@BrodyPianist 10 жыл бұрын
thanks heaps, just found your videos, the visualizations are extremely helpful for me
@Khwartz
@Khwartz 7 жыл бұрын
Very Thanks, especially for using black board with green writing, So Good for the eyes :)
@mattyhild1014
@mattyhild1014 2 жыл бұрын
If you're struggling with this video i highly recommend starting with 3blue1brown episode 3 & 4 of lockdown math. Explains the fundamentals.
@x.m.caucase7841
@x.m.caucase7841 10 жыл бұрын
Even if I know those formulas very well, I still don't feel the relation between exponential function and cos and sin... it's really frustrating.
@fitofight8540
@fitofight8540 8 жыл бұрын
X.M. Caucase see Taylor series expansion for exponential and you will understand the connection
@EduTech01
@EduTech01 7 жыл бұрын
iitg.vlab.co.in/?sub=59&brch=166&sim=618&cnt=1 dear caucase please visit this link and find couple of graphs at the end. Complex exponential signals are plotted. If you observe, the x axis of exponential signal represent cos and y axis of the curve show sin.
@EduTech01
@EduTech01 7 жыл бұрын
kzbin.info/www/bejne/gZCmaJuqiL2CiLs This video will also help you grab the idea
@mnada72
@mnada72 6 жыл бұрын
In order to feel the relation , one way is to look at Taylor expansion of e^x and cos(x) and sin(x)
@Bjowolf2
@Bjowolf2 5 жыл бұрын
Correction - that Greek letter is a Theta, not an Omega 😉
@lighttangerinesky
@lighttangerinesky 7 жыл бұрын
Your video was very clear to understand. Thank you
@nelsonaleon
@nelsonaleon 8 жыл бұрын
Beter explanation ever, thanks
@lena191
@lena191 11 жыл бұрын
real good! keep up the good work!
@hassanmachlab5881
@hassanmachlab5881 6 жыл бұрын
WONDERFUL THANK YOU!
@Sam_on_YouTube
@Sam_on_YouTube 7 жыл бұрын
Is there a reason other than historical accident that i is such a big deal? It seems to be just a unit vector that is perpendicular to some unstated vector. Wouldn't it be theoretically better, albeit more difficult in some situations, to state your vectors at all times? Whether they be in the x or y direction or i? The square root of a negative unit vector is an orthagonal unit vector. Rotate the unit vector from the origin about an orthagonal vector twice and you get the negative of the unit vector, which is the geometroc definition of the square root of -1. But it need not be one particular vector called i, it can be done in any dimension. Using i makes things difficult if you are trying to develop formulas that go beyond 2 dimensions. If you use e^ip as an expression of tracing aroind a circle, and then try to go into another dimension and talk about spheres or conic sections, you have to be very careful. If instead of thinking of i as a number, we think of it as an arbitrary dimension, it is much easier to add more arbitrary dimensions as needed.
@DfromBoston2
@DfromBoston2 10 жыл бұрын
Thank you, sensei!
@truetruetruly2163
@truetruetruly2163 5 жыл бұрын
e to the i omega? isn't it theta?
@datakprosto123
@datakprosto123 11 жыл бұрын
thank you!
@ckhalifa_
@ckhalifa_ 5 жыл бұрын
the complete formula is f(θ, k) = e^i(θ+2kπ)
@mrboyban
@mrboyban 5 жыл бұрын
can you do a video about then? really struggling with expression (2-w)(2-w^2)(2-w^3) as omega w=e^ipi/5. Do you know anything that can help me evaluate as the answer should be 31.
@oldcar8592
@oldcar8592 6 жыл бұрын
This was a wonderful explanation. I do disagree with his statement starting at :28 that by looking at the magnitude of the coefficient of e^(i)(theta) on the left hand side of the equation that we know this describes a unit circle with magnitude 1 in the complex plane. I believe we can't know by observation alone that there is not a magnitude value other than 1 embedded in e^(i)(theta). After all, e^0 = 1, e^1 = 2.71828..., so who can say e^(i)(theta) doesn't have a coefficient other than 1 as part of it's value? Or even a varying magnitude value just as e with a varying real exponent varies?
@TheGmr140
@TheGmr140 5 жыл бұрын
complex exponentials used in communications: kzbin.info/www/bejne/sH_FiIefgKqfaZI&t
@batuhanartan
@batuhanartan 5 жыл бұрын
Well great video , thank you :) But still you haven't explain whats the relation between exponential and complex exponential ? You sad " have you ever thought about exponential, and it doesn't look like complex exponential graphs, it is just moving circle around", and you passed the explaination.
@ckhalifa_
@ckhalifa_ 5 жыл бұрын
Re(e^z) = e^x
@ardaaksu5033
@ardaaksu5033 3 жыл бұрын
Damn 8 years old
Complex Exponential Function 2
9:57
DaveAcademy
Рет қаралды 30 М.
What does an imaginary power mean?
8:15
Eddie Woo
Рет қаралды 34 М.
人是不能做到吗?#火影忍者 #家人  #佐助
00:20
火影忍者一家
Рет қаралды 20 МЛН
How Strong Is Tape?
00:24
Stokes Twins
Рет қаралды 96 МЛН
the complex exponential function
10:16
Maths 505
Рет қаралды 6 М.
i^i
12:27
blackpenredpen
Рет қаралды 1,2 МЛН
Complex Analysis L04: The Complex Logarithm, Log(z)
28:01
Steve Brunton
Рет қаралды 46 М.
The beauty of the complex exponential -- Complex Analysis 4
29:48
Evaluating (1+i)ⁱ | A Very Complex Number?
8:50
SyberMath
Рет қаралды 80 М.
Complex Numbers in Quantum Mechanics
19:57
Richard Behiel
Рет қаралды 184 М.
The Most Beautiful Equation
13:39
Digital Genius
Рет қаралды 728 М.
sqrt(i)
9:02
blackpenredpen
Рет қаралды 4,7 МЛН
Complex Analysis 13 | Complex Logarithm
12:38
The Bright Side of Mathematics
Рет қаралды 22 М.
Exponential Signals (Real and Complex)
14:45
Neso Academy
Рет қаралды 121 М.
人是不能做到吗?#火影忍者 #家人  #佐助
00:20
火影忍者一家
Рет қаралды 20 МЛН