Check out the corresponding blog and other resources for this video at: deeplizard.com/learn/video/mFAIBMbACMA
@shineshine95995 жыл бұрын
U should have 1 million subscriber
@MrVampireutd5 жыл бұрын
Hello I'm facing a problem and I hope you can help me with it I'm trying to add values after making the flatten but these values must be based on each image's pixels so for each image in the training set im trying to add some values after the flatten to feed it to the fully connected network Thanks in advanced
@darshanjani75953 жыл бұрын
Watching the whole ad as well as clicking the ad to support you guys❤️
@sourajitsaha47245 жыл бұрын
t = t.reshape(t.shape[0],-1), works regardless of the number of color channels or even output channels for that matter. It's great fun - watching your videos. They are both stimulating, cognizant and informative - a rare combination to find in tutoring. Cheers mate! Keep up the good work.
@deeplizard5 жыл бұрын
Hey Sourajit - Thank you! I really appreciate that, and I'm glad you have enjoyed the playlist!!
@crespoo04 жыл бұрын
One of the best channels!These are videos with high quality content, production animation verbal and visual explanations well put together! Thanks for doing this!
@rohitvoleti34095 жыл бұрын
Really cool animations along with their parallel explanations, nice job
@min-youngchoi38334 жыл бұрын
I don't expected This was interactive! Awesome!
@caninekulo86374 жыл бұрын
Why don't you have more subs. This is gold
@preritjain39806 жыл бұрын
t.reshape(t.shape[0],-1)
@reinasama9042 жыл бұрын
Your amazing work is helping me tremendously, thank you so so much!
@howardsmith90324 жыл бұрын
Excellent work guys!
@vinayaknayak73745 жыл бұрын
t.reshape(t.size()[0], t.size()[1] * t.size()[2] * t.size()[3]) Thanks for this awesome series of tutorials and blogposts. I benefited a lot from this. Keep up the good work :)
@mpalaourg85974 жыл бұрын
i am a (couple) year late, but ... t.reshape(3, -1) does the work for the example of the video or t.reshape(t.shape[0], -1) does the work for every number of batches
@vipulmishra5546 жыл бұрын
This would probably seem stupid but I'm posting it since it surprisingly worked. t.reshape(int(torch.tensor(t.shape)[0]),int(torch.tensor(t.shape)[1])*int(torch.tensor(t.shape)[2])*int(torch.tensor(t.shape)[3]))
@tymo33914 жыл бұрын
very good video!
@sqliu94893 жыл бұрын
Thanks for the great videos !
@ros61434 жыл бұрын
For RGB images with 3 color channels, shouldn't you use 'start_dim=2' instead of 'start_dim-1' so that each color channel of the image is flattened individually? Or do you just flatten all of them at once? Thanks!
@bidhanmajhi5 жыл бұрын
I like the Ted talk in the end
@TensorWave6 жыл бұрын
Thank you for these Videos. They really help a lot for beginners !
@deeplizard6 жыл бұрын
Hey Prathmesh - You are welcome!
@Livakivi6 жыл бұрын
Thank you for another high quality video :) Here is one simple solution: t.view(t.shape[0], -1) get the first (or any) dimension with .shape, and use -1 to flatten the rest
@deeplizard6 жыл бұрын
Thanks Ulm - You're welcome! Nice solution. I like how this solution generalizes to batches of any size. 🤖
@carltondaniel89665 жыл бұрын
i understood that we combine all the layers from the image matrix to perform flattening operation , but i did not understand why are we doing this , the end result is we pass the values to the soft-max classifier which performs a multi class classification , thanks in advance
@carltondaniel89665 жыл бұрын
wonderful content!!!!
@CoolDude9115 жыл бұрын
There's a frog on a log in a hole at the bottom of the sea. The frog is number width of the image, the log is the height, the hole is the channel and the depth is the index of the image in the data-set. Easy.
@deeplizard5 жыл бұрын
I had a lot of fun reading this. 🤣🤣🤣 It's going over my head though, so if it's not completely random, I'd love to hear more.
@MdHasan-kh4dq5 жыл бұрын
It's an awesome series..
@deeplizard5 жыл бұрын
Hey Md Hasan - Thank you!
@syed12974 жыл бұрын
sound effects are from bisqwit c++ simd videos?
@deeplizard4 жыл бұрын
Many creators use the same sound effects libraries 😄
@syed12974 жыл бұрын
@@deeplizard oh I didn't know that. Great content BTW. Love it, I'm binge-watching.
@carltondaniel89665 жыл бұрын
if we have 3 color channels rgb ,when we perform the flatten operation will all the 3 channels combine as one tensor , thanks in advance !!!
@deeplizard5 жыл бұрын
Yes. Here is some experimental code: r = torch.ones(1,2,2) g = torch.ones(1,2,2) + 1 b = torch.ones(1,2,2) + 2 img = torch.cat( (r,g,b) ,dim=0 ) img.shape #output: torch.Size([3, 2, 2]) img #output: tensor([[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]]) This code gives us an rgb image that has height and width of 2. Now, flatten like this: img.flatten(start_dim=0) #output: tensor([1., 1., 1., 1., 2., 2., 2., 2., 3., 3., 3., 3.])
@desultorythoughts6 жыл бұрын
Great Video deserves more views 73 likes and no dislike speaks for itself
@deeplizard6 жыл бұрын
Thank you Akash!
@JimmyCheng6 жыл бұрын
does modern camera system's eye tracking system use CNN?
@deeplizard6 жыл бұрын
Hey Ziqiang - Not sure which ones do and which ones don't. We are likely moving in that direction though. Here are a couple of resources that look interesting: blogs.nvidia.com/blog/2016/08/30/eye-tracking-deep-learning/ arxiv.org/abs/1806.10890 stanford.edu/class/ee267/Spring2018/report_griffin_ramirez.pdf
@JimmyCheng6 жыл бұрын
wonderful contents, plz keep up the good work, I just happen to have a project on pytorch this summer, would be immensely helpful!
@deeplizard6 жыл бұрын
Thank you Ziqiang! Really appreciate all your comments!
@sumitvaise54525 жыл бұрын
t.reshape(3,16).squeeze(dim=1)
@morten-punnerud_engelstad6 жыл бұрын
t.reshape(-1,16) or t.reshape(-1,t.flatten(start_dim=1).shape[1])
@deeplizard6 жыл бұрын
Hey Morten - You've got it. They work! Thanks for contributing these! 🚀
@farhatwissem84976 ай бұрын
t.reshape(3, -1).squeeze(dim=1)
@dranaju_oficial6 жыл бұрын
t.reshape(3, -1) make the trick
@deeplizard6 жыл бұрын
Hey Junior - Excellent! I like. 🤖
@TerragonDE6 жыл бұрын
@Junior De Jesus nice, now i also understood what exactly the -1 was doing in the last video in the def flatten(t) - function. :D
@dranaju_oficial6 жыл бұрын
The -1 parameter means that the torch or numpy will figure out the unknown dimension by looking at the 'length of the array and remaining dimensions'
@baiyuzhao42816 жыл бұрын
It's not a good answer, I think it should be t.reshape(t.shape[0], -1).
@jonatan01i5 жыл бұрын
@@baiyuzhao4281 Was it specified that the answer should be general?
@Ruhgtfo5 жыл бұрын
Mindblow
@jacobstech17776 жыл бұрын
really good video, why only 467 views?
@deeplizard6 жыл бұрын
Thanks YUAN! 467 is pretty weak. I know. Hopefully it's only temporary. Thank your for your comment. I really appreciate that! :)
@jacobstech17776 жыл бұрын
deeplizard I am waiting for more pytorch videos🤣
@pakhomovviktor31496 жыл бұрын
"PyTorch’s built-in flatten() method." Hey there, r u sure there is FLATTEN() in Pytorch? Could not find in the official Pytorch documentation.
@deeplizard6 жыл бұрын
Hey Pakhomov - You are right! The documentation is missing for the flatten function. The flatten function is new. It was added in PyTorch 4.0.1. This is the commit where the function was added: github.com/pytorch/pytorch/pull/8578 You can also see it here (search for flatten): github.com/pytorch/pytorch/releases There was an issue opened for the documentation issue. Check it out here: github.com/pytorch/pytorch/issues/9876 The issue was already fixed and merged into the master code branch. You can see it here: pytorch.org/docs/master/ To get to that link from the official docs page, use the version selector at the top, and choose master. Good eye on that one. Great attention to detail! Hope this info helps!
@djfl58mdlwqlf5 жыл бұрын
what is this "batch"? It's confusing me for a long time
@deeplizard5 жыл бұрын
Check out the below video and blog from our Deep Learning Fundamentals course. It is all about batches in deep learning. Let me know if it helps clarify! deeplizard.com/learn/video/U4WB9p6ODjM
t = torch.stack((t1,t2,t3)).reshape(3,1,16).squeeze()
@Zagroseckt Жыл бұрын
i've been watching these on headphones. untill this video.. Sudenly earthquake.. evedently my headphones have no base responce :p But my speakers can shake the hosue..
@kanthikiransirra75354 жыл бұрын
t.reshape(1,3,16)
@pradeepkumar-ew1ze4 жыл бұрын
t.flatten().reshape(3, 16).squeeze() ( sorry for being late to the party :P)
@mariaralucaduminica99164 жыл бұрын
t.reshape(3,16)
@DanNovischi5 жыл бұрын
t = t.reshape(dim, t.shape[0], 1, -1) t = t.squeeze()
@akshooter_50104 жыл бұрын
t.reshape(t.flutten(start_dim=1).shap) ;)
@ShivamYadav-rx3hy5 жыл бұрын
T.reshape(1,-1)[1]
@alihatefi56943 жыл бұрын
t.reshape(3,1,1,-1)
@mruduldhawley27302 жыл бұрын
t.reshape(t.shape[0],int(t.numel()/t.shape[0])) this will work as well
@leminhhung1514 жыл бұрын
t.reshape(3,1,1,-1).squeeze()
@sulemanrasheed16346 жыл бұрын
t = t.reshape(len(t), -1)
@chidambarjoshi347011 ай бұрын
t.reshape(1,-1)[1]
@theflippedbit4 жыл бұрын
Damn, every time I see a video of yours it makes me feel bad as in why haven't I subscribed to your Patreon account yet. Such is the quality and effort made in every single frame in every video. Feels like stealing.
Alghouth it's late, I am gonna post my answer. t.reshape( t.shape[0], -1 )
@rafail_fridman5 жыл бұрын
Can you please not include that loud bass sound when you type code? It's really hurts my ears when I watch you in my headphones :(
@deeplizard5 жыл бұрын
Hey Raphael - Sorry about that. It's pretty much in for this whole series. I'll consider removing it in future videos. Which brand of headphones are you using? In my headphones it sounds very low and soothing.
@floyd0845 жыл бұрын
I've noticed the high bass in both my headphones and in my car. Your headphones may be lowering the bass.