Check out the corresponding blog and other resources for this video at: deeplizard.com/learn/video/k6ZF1TSniYk
@cassiusnolan28513 жыл бұрын
pro trick: you can watch movies on flixzone. Me and my gf have been using it for watching a lot of movies these days.
@jonahfinn68523 жыл бұрын
@Cassius Nolan Yea, I have been watching on Flixzone for months myself :D
@ravihammond6 жыл бұрын
I'm loving your short clips at the end of each video. Great touch!
@upiferico3 жыл бұрын
I rarely comment. But your content is so good I had to pause and make you know that!! thanks :)
@lingshuaikong5644 Жыл бұрын
I just cannot be more grateful to you for providing such an clear and thorough and vivid illustration of the concepts in Deep Learning. Things you've down really make sense and help a lot of people who want to enter the Deep Learning field lacking of ways to kick in like me. Truely Thanks! May you good!
@deeplizard Жыл бұрын
Thank you for taking the time to let me know! 😊 Chris
@reefcrazed20705 жыл бұрын
I really like these snippets you put through your videos. They have a purpose and are well done.
@deeplizard5 жыл бұрын
Hey Reefcrazed - Thank you for your comment! Appreciate your feedback. It is like fuel!
@richarda16303 жыл бұрын
you guys do such an incredible job of explaining, and the overall why videos at the end get the viewer all inspired and pumped up for more! :)
@mohammedrakib37363 жыл бұрын
Crystal 🔮 clear! Loved the animations! Finally understood how color channels get converted to feature maps using filters while convolving.
@vaishnavideshpande22334 жыл бұрын
I can watch these tutorials all day!
@Vikram-wx4hg4 жыл бұрын
Lovely explanations!
@rafaeloyamada27123 жыл бұрын
Dude, such a great channel! I am even watching videos about topics that I already am familiar with, thanks for that
@srijaljoshi34216 жыл бұрын
Your channel, in addition to your website, is pure value! Just wanted to drop by and say that please don't stop making new content!
@deeplizard6 жыл бұрын
Thank you, Srijal! Glad you're enjoying the content!
@Brahma20125 жыл бұрын
The insights to deep learning in this video is amazing. Explanation of CNN Tensor is lucid and clear!!
@philipweslow5655 жыл бұрын
{ "question": "In a typical input tensor to a CNN, the first axis usually denotes what type of information?", "choices": [ "The feature map.", "The number of convolutional filters.", "The batch size.", "The color channel." ], "answer": "The batch size.", "creator": "PW", "creationDate": "2019-07-08T18:13:21.102Z" }
@deeplizard5 жыл бұрын
Also, added "for pytorch" for this one too. I've just added them to the quiz. Let me know if you see them and if all is good. Thanks again! 🧠🚀
@sqliu94893 жыл бұрын
love this channel !
@sahbatahsini47256 жыл бұрын
Your channel is just AMAZING! full of comprehensive, updated and high-quality videos. Good job man!
@deeplizard6 жыл бұрын
Thank you so much Sahba! Really appreciate that! 🧠
@Sikuq4 жыл бұрын
That filter animation - wow.
@Nikage234 жыл бұрын
this channel is a treasure!
@tianjoshua40793 жыл бұрын
Explained masterly. Deeply appreciated!
@yourxploit78583 жыл бұрын
These videos are great
@DanielWeikert6 жыл бұрын
Thanks so much. Very well explained and a perfect continuation from the last video. Again, you guys are simply awesome
@tymo33914 жыл бұрын
very well presented content!
@philipweslow5655 жыл бұрын
{ "question": "What is the length of a typical input tensor for a CNN?", "choices": [ "100", "28", "4", "1" ], "answer": "1", "creator": "PW", "creationDate": "2019-07-08T18:01:41.732Z" }
@deeplizard5 жыл бұрын
Hey Philip - Thanks for the question. For this one, did you mean the "shape" of an input tensor to a CNN has a length of "4"?
@joebender90525 жыл бұрын
I wish I'd had this explanation the first time I tried making a CNN in PyTorch.
@Sikuq4 жыл бұрын
Great. Thank you.
@philipweslow5655 жыл бұрын
{ "question": "In a typical input tensor to a CNN, which two axes denote the height and width coordinates of a particular pixel?", "choices": [ "The first two.", "The last two.", "The middle two.", "There is no set convention." ], "answer": "The last two.", "creator": "PW", "creationDate": "2019-07-08T18:08:58.979Z" }
@deeplizard5 жыл бұрын
The order of the axes is arbitrary, so it might be different depending on the framework. For example, Keras defaults to having the channels last. The question is still good. I just added "for PyTorch". 🧠🚀
@anastassioskaragiannis85544 жыл бұрын
{ "question": "Considering a tensor with the following shape [3500, 3, 1920, 1200]. How many samples do we have ?", "choices": [ "3500", "3", "1920", "1200" ], "answer": "3500", "creator": "AKTasos", "creationDate": "2020-02-10T09:05:52.275Z" }
@deeplizard4 жыл бұрын
Thanks, Anastassios! Just added your question to deeplizard.com/learn/video/k6ZF1TSniYk :)
@ferielferiel50065 жыл бұрын
Finally found what I was looking for
@mck1ing Жыл бұрын
A question about 5:22, if your CNN kernel is taking in nxn blocks of the image does that mean it can mix and match between different "A3"s of your input tensor? because if you A2xA3 is 28x28 I would imagine each A3 represents a horizontal or vertical strip of the image.
@bedeamadi93172 жыл бұрын
{ "question": "Which of these represents a PyTorch CNN tensor input for a grayscale image", "choices": [ "[3200,1,32,32]", "[3200,3,32,32]", "[3200,32,32,3]", "[3200,32,32,1]" ], "answer": "[3200,1,32,32]", "creator": "B.A", "creationDate": "2022-01-17T09:07:56.413Z" }
@sandeepladi59293 жыл бұрын
Can you please create a video on create custom keras layer where we can replace the convolution operation with the other operations like Euclidean, sigmoid, Gaussian etc.
@ליהיימליך6 жыл бұрын
wow, that's a great video!
@GauravSharma-ui4yd4 жыл бұрын
hey can you send the link to nvidia talk presented at the end
@deeplizard4 жыл бұрын
Hey Gaurav - I added it to the description: kzbin.info/www/bejne/fIGwZKGjocaBZpI You can also find other newer talks by going to Nvidia's youbute channel. Search for nvidia key note.
@kritikaprasai11215 жыл бұрын
So if I am using a 700*460 pixel image then input shape of my layer will be (3,700,460) and for batch size I can just take some random value based on what kind of batch I want(stochastic,mini batch)??
@deeplizard5 жыл бұрын
Hey Anukritika - That's correct. 🚀
@LakshmiSivaKarthikPadala-y9h Жыл бұрын
meanwhile I was waiting for 2012 year as "end of the world", Alex did big bang in AI!
@hrehann5 жыл бұрын
Hi, the convolution of a RGB image (32 x 32 x 3) with filter (3 x 3 x 3) results in a feature map (28 x 28 x 1). I see that the feature map is 2dimensional...Having seen a lot of lectures i still have a confusion whether the feature maps are grayscale or RGB. Since during the convolution each channel of image and filter are convolved separately and then added that results in a 2d feature map...but still addition of R+G+B channels results in a colour image. any help will be appreciated
@deeplizard5 жыл бұрын
Hey hrehann - The feature maps (aka output channels) are arbitrary and depend on the number of filters inside the layer. In your example, the number of output channels is assumed to be 1. However, the number of output channels could be any number. The number of output channels depends on the network’s architecture. The way to think about this is to realize that the feature maps (output channels) are more abstract data structures (opposed to RGB and Grayscale). This is why we stop referring to images after the input layer and start using a different word (feature maps). We touch on this a bit in the series here: deeplizard.com/learn/video/IKOHHItzukk If you are interested in visualizing feature maps, this may be helpful: distill.pub/2017/feature-visualization/
@hrehann5 жыл бұрын
@@deeplizard Hi, thanks for your response. Finally things are clear now!
@louerleseigneur45324 жыл бұрын
merci merci
@magelauditore3334 жыл бұрын
Please Please start tutorial on RNNs too atleast shapes part
@akashthoriya6 жыл бұрын
can you please elaborate, what is shape?
@deeplizard6 жыл бұрын
Hey Aakash - The shape defines the structure of the tensor. It specifies the number of axes and their lengths. Have you seen these two yet? deeplizard.com/learn/video/AiyK0idr4uM deeplizard.com/learn/video/fCVuiW9AFzY They come before this video in the series and have many details on shape. Let me know if these help.
@nsu32745 жыл бұрын
can i say something *'gigantic love from india'*
@yashas99745 жыл бұрын
The person who downvoted was so excited that they had their head turned upside down when they hit the dislike button.
@deeplizard5 жыл бұрын
Haha. Love it. 🙃 🤣
@felixt29203 жыл бұрын
Good explanation, but the problem is im really bad in english
@deeplizard3 жыл бұрын
You can use the text version on the blog which might be easier 😃