CNN Tensor Shape Explained - Convolutional Neural Networks and Feature Maps

  Рет қаралды 59,039

deeplizard

deeplizard

Күн бұрын

Пікірлер: 59
@deeplizard
@deeplizard 6 жыл бұрын
Check out the corresponding blog and other resources for this video at: deeplizard.com/learn/video/k6ZF1TSniYk
@cassiusnolan2851
@cassiusnolan2851 3 жыл бұрын
pro trick: you can watch movies on flixzone. Me and my gf have been using it for watching a lot of movies these days.
@jonahfinn6852
@jonahfinn6852 3 жыл бұрын
@Cassius Nolan Yea, I have been watching on Flixzone for months myself :D
@ravihammond
@ravihammond 6 жыл бұрын
I'm loving your short clips at the end of each video. Great touch!
@lingshuaikong5644
@lingshuaikong5644 Жыл бұрын
I just cannot be more grateful to you for providing such an clear and thorough and vivid illustration of the concepts in Deep Learning. Things you've down really make sense and help a lot of people who want to enter the Deep Learning field lacking of ways to kick in like me. Truely Thanks! May you good!
@deeplizard
@deeplizard Жыл бұрын
Thank you for taking the time to let me know! 😊 Chris
@reefcrazed2070
@reefcrazed2070 5 жыл бұрын
I really like these snippets you put through your videos. They have a purpose and are well done.
@deeplizard
@deeplizard 5 жыл бұрын
Hey Reefcrazed - Thank you for your comment! Appreciate your feedback. It is like fuel!
@richarda1630
@richarda1630 3 жыл бұрын
you guys do such an incredible job of explaining, and the overall why videos at the end get the viewer all inspired and pumped up for more! :)
@srijaljoshi3421
@srijaljoshi3421 6 жыл бұрын
Your channel, in addition to your website, is pure value! Just wanted to drop by and say that please don't stop making new content!
@deeplizard
@deeplizard 6 жыл бұрын
Thank you, Srijal! Glad you're enjoying the content!
@Brahma2012
@Brahma2012 5 жыл бұрын
The insights to deep learning in this video is amazing. Explanation of CNN Tensor is lucid and clear!!
@vaishnavideshpande2233
@vaishnavideshpande2233 4 жыл бұрын
I can watch these tutorials all day!
@upiferico
@upiferico 3 жыл бұрын
I rarely comment. But your content is so good I had to pause and make you know that!! thanks :)
@mohammedrakib3736
@mohammedrakib3736 3 жыл бұрын
Crystal 🔮 clear! Loved the animations! Finally understood how color channels get converted to feature maps using filters while convolving.
@Sikuq
@Sikuq 4 жыл бұрын
That filter animation - wow.
@Vikram-wx4hg
@Vikram-wx4hg 4 жыл бұрын
Lovely explanations!
@sahbatahsini4725
@sahbatahsini4725 6 жыл бұрын
Your channel is just AMAZING! full of comprehensive, updated and high-quality videos. Good job man!
@deeplizard
@deeplizard 6 жыл бұрын
Thank you so much Sahba! Really appreciate that! 🧠
@philipweslow565
@philipweslow565 5 жыл бұрын
{ "question": "In a typical input tensor to a CNN, the first axis usually denotes what type of information?", "choices": [ "The feature map.", "The number of convolutional filters.", "The batch size.", "The color channel." ], "answer": "The batch size.", "creator": "PW", "creationDate": "2019-07-08T18:13:21.102Z" }
@deeplizard
@deeplizard 5 жыл бұрын
Also, added "for pytorch" for this one too. I've just added them to the quiz. Let me know if you see them and if all is good. Thanks again! 🧠🚀
@rafaeloyamada2712
@rafaeloyamada2712 3 жыл бұрын
Dude, such a great channel! I am even watching videos about topics that I already am familiar with, thanks for that
@Nikage23
@Nikage23 5 жыл бұрын
this channel is a treasure!
@DanielWeikert
@DanielWeikert 6 жыл бұрын
Thanks so much. Very well explained and a perfect continuation from the last video. Again, you guys are simply awesome
@tymo3391
@tymo3391 4 жыл бұрын
very well presented content!
@sqliu9489
@sqliu9489 3 жыл бұрын
love this channel !
@tianjoshua4079
@tianjoshua4079 4 жыл бұрын
Explained masterly. Deeply appreciated!
@philipweslow565
@philipweslow565 5 жыл бұрын
{ "question": "What is the length of a typical input tensor for a CNN?", "choices": [ "100", "28", "4", "1" ], "answer": "1", "creator": "PW", "creationDate": "2019-07-08T18:01:41.732Z" }
@deeplizard
@deeplizard 5 жыл бұрын
Hey Philip - Thanks for the question. For this one, did you mean the "shape" of an input tensor to a CNN has a length of "4"?
@joebender9052
@joebender9052 5 жыл бұрын
I wish I'd had this explanation the first time I tried making a CNN in PyTorch.
@yourxploit7858
@yourxploit7858 3 жыл бұрын
These videos are great
@anastassioskaragiannis8554
@anastassioskaragiannis8554 4 жыл бұрын
{ "question": "Considering a tensor with the following shape [3500, 3, 1920, 1200]. How many samples do we have ?", "choices": [ "3500", "3", "1920", "1200" ], "answer": "3500", "creator": "AKTasos", "creationDate": "2020-02-10T09:05:52.275Z" }
@deeplizard
@deeplizard 4 жыл бұрын
Thanks, Anastassios! Just added your question to deeplizard.com/learn/video/k6ZF1TSniYk :)
@philipweslow565
@philipweslow565 5 жыл бұрын
{ "question": "In a typical input tensor to a CNN, which two axes denote the height and width coordinates of a particular pixel?", "choices": [ "The first two.", "The last two.", "The middle two.", "There is no set convention." ], "answer": "The last two.", "creator": "PW", "creationDate": "2019-07-08T18:08:58.979Z" }
@deeplizard
@deeplizard 5 жыл бұрын
The order of the axes is arbitrary, so it might be different depending on the framework. For example, Keras defaults to having the channels last. The question is still good. I just added "for PyTorch". 🧠🚀
@Sikuq
@Sikuq 4 жыл бұрын
Great. Thank you.
@ferielferiel5006
@ferielferiel5006 5 жыл бұрын
Finally found what I was looking for
@bedeamadi9317
@bedeamadi9317 3 жыл бұрын
{ "question": "Which of these represents a PyTorch CNN tensor input for a grayscale image", "choices": [ "[3200,1,32,32]", "[3200,3,32,32]", "[3200,32,32,3]", "[3200,32,32,1]" ], "answer": "[3200,1,32,32]", "creator": "B.A", "creationDate": "2022-01-17T09:07:56.413Z" }
@mck1ing
@mck1ing Жыл бұрын
A question about 5:22, if your CNN kernel is taking in nxn blocks of the image does that mean it can mix and match between different "A3"s of your input tensor? because if you A2xA3 is 28x28 I would imagine each A3 represents a horizontal or vertical strip of the image.
@sandeepladi5929
@sandeepladi5929 3 жыл бұрын
Can you please create a video on create custom keras layer where we can replace the convolution operation with the other operations like Euclidean, sigmoid, Gaussian etc.
@magelauditore333
@magelauditore333 4 жыл бұрын
Please Please start tutorial on RNNs too atleast shapes part
@GauravSharma-ui4yd
@GauravSharma-ui4yd 4 жыл бұрын
hey can you send the link to nvidia talk presented at the end
@deeplizard
@deeplizard 4 жыл бұрын
Hey Gaurav - I added it to the description: kzbin.info/www/bejne/fIGwZKGjocaBZpI You can also find other newer talks by going to Nvidia's youbute channel. Search for nvidia key note.
@louerleseigneur4532
@louerleseigneur4532 4 жыл бұрын
merci merci
@ליהיימליך
@ליהיימליך 6 жыл бұрын
wow, that's a great video!
@LakshmiSivaKarthikPadala-y9h
@LakshmiSivaKarthikPadala-y9h Жыл бұрын
meanwhile I was waiting for 2012 year as "end of the world", Alex did big bang in AI!
@akashthoriya
@akashthoriya 6 жыл бұрын
can you please elaborate, what is shape?
@deeplizard
@deeplizard 6 жыл бұрын
Hey Aakash - The shape defines the structure of the tensor. It specifies the number of axes and their lengths. Have you seen these two yet? deeplizard.com/learn/video/AiyK0idr4uM deeplizard.com/learn/video/fCVuiW9AFzY They come before this video in the series and have many details on shape. Let me know if these help.
@hrehann
@hrehann 5 жыл бұрын
Hi, the convolution of a RGB image (32 x 32 x 3) with filter (3 x 3 x 3) results in a feature map (28 x 28 x 1). I see that the feature map is 2dimensional...Having seen a lot of lectures i still have a confusion whether the feature maps are grayscale or RGB. Since during the convolution each channel of image and filter are convolved separately and then added that results in a 2d feature map...but still addition of R+G+B channels results in a colour image. any help will be appreciated
@deeplizard
@deeplizard 5 жыл бұрын
Hey hrehann - The feature maps (aka output channels) are arbitrary and depend on the number of filters inside the layer. In your example, the number of output channels is assumed to be 1. However, the number of output channels could be any number. The number of output channels depends on the network’s architecture. The way to think about this is to realize that the feature maps (output channels) are more abstract data structures (opposed to RGB and Grayscale). This is why we stop referring to images after the input layer and start using a different word (feature maps). We touch on this a bit in the series here: deeplizard.com/learn/video/IKOHHItzukk If you are interested in visualizing feature maps, this may be helpful: distill.pub/2017/feature-visualization/
@hrehann
@hrehann 5 жыл бұрын
@@deeplizard Hi, thanks for your response. Finally things are clear now!
@kritikaprasai1121
@kritikaprasai1121 5 жыл бұрын
So if I am using a 700*460 pixel image then input shape of my layer will be (3,700,460) and for batch size I can just take some random value based on what kind of batch I want(stochastic,mini batch)??
@deeplizard
@deeplizard 5 жыл бұрын
Hey Anukritika - That's correct. 🚀
@nsu3274
@nsu3274 5 жыл бұрын
can i say something *'gigantic love from india'*
@yashas9974
@yashas9974 5 жыл бұрын
The person who downvoted was so excited that they had their head turned upside down when they hit the dislike button.
@deeplizard
@deeplizard 5 жыл бұрын
Haha. Love it. 🙃 🤣
@felixt2920
@felixt2920 3 жыл бұрын
Good explanation, but the problem is im really bad in english
@deeplizard
@deeplizard 3 жыл бұрын
You can use the text version on the blog which might be easier 😃
PyTorch Tensors Explained - Neural Network Programming
10:17
deeplizard
Рет қаралды 51 М.
When you have a very capricious child 😂😘👍
00:16
Like Asiya
Рет қаралды 18 МЛН
人是不能做到吗?#火影忍者 #家人  #佐助
00:20
火影忍者一家
Рет қаралды 20 МЛН
Convolutional Neural Networks from Scratch | In Depth
12:56
Rank, Axes, and Shape Explained - Tensors for Deep Learning
10:04
Graph Neural Networks - a perspective from the ground up
14:28
Code for Deep Learning - ArgMax and Reduction Tensor Ops
13:41
deeplizard
Рет қаралды 28 М.
Why Does Diffusion Work Better than Auto-Regression?
20:18
Algorithmic Simplicity
Рет қаралды 405 М.
Multi-Dimensional Data (as used in Tensors) - Computerphile
9:20
Computerphile
Рет қаралды 151 М.
Watching Neural Networks Learn
25:28
Emergent Garden
Рет қаралды 1,4 МЛН
All Machine Learning algorithms explained in 17 min
16:30
Infinite Codes
Рет қаралды 471 М.