Differentiable Neural Computer (LIVE)

  Рет қаралды 46,277

Siraj Raval

Siraj Raval

Күн бұрын

Пікірлер: 64
@Collinoeight
@Collinoeight 7 жыл бұрын
This is easily the best thing I've seen all month. Probably all year.
@martinpetersson4350
@martinpetersson4350 7 жыл бұрын
I feel the same!
@SirajRaval
@SirajRaval 7 жыл бұрын
awesome to hear
@o0xemas0o
@o0xemas0o 7 жыл бұрын
Man, I love how you explore both the theoretical high level understanding as well as the nitty gritty. There's a lot of technical jargon that can be confusing, and I have found that people who don't really understand AI will focus entirely on the minutia.
@SwanandKulkarni2194
@SwanandKulkarni2194 7 жыл бұрын
Loved it. Code walk through was so precise, & easy language explanation for everyone's understanding. Just great. Extremely excited about the upcoming stuff, eagerly waiting.
@SirajRaval
@SirajRaval 7 жыл бұрын
awesome
@WildAnimalChannel
@WildAnimalChannel 7 жыл бұрын
Lots of people tried it but they never got it to work before! Deep mind are very clever people!
@larryteslaspacexboringlawr739
@larryteslaspacexboringlawr739 7 жыл бұрын
thank you for Differentiable Neural Computer video, helping me learn a very complicated topic
@JM168M
@JM168M 7 жыл бұрын
Siraj you should write books base on all your teaching here. Make it easy to understand just like your videos!. Love you Man!!
@chrisfaraday3924
@chrisfaraday3924 6 жыл бұрын
Videos and courses > Books
@MrNtuer
@MrNtuer 7 жыл бұрын
Easily the best rap among what I have watched this year!
@SirajRaval
@SirajRaval 7 жыл бұрын
awesome
@simdimdim
@simdimdim 5 жыл бұрын
didn't sound like rap, more like rock and roll :D
@nitink4245
@nitink4245 7 жыл бұрын
siraj , you are the best
@Arjun-jt7yb
@Arjun-jt7yb 7 жыл бұрын
one of my favorite videos that I like most.
@CarterColeisInfamous
@CarterColeisInfamous 7 жыл бұрын
your totally right we need hardware and the software should program the hardware
@fayezbayzidify
@fayezbayzidify 7 жыл бұрын
Yo Siraj thanks to your awesome ways of teaching I made one before google but instead I used a seed to encode the memory
@kazinazmulhaqueshezan4219
@kazinazmulhaqueshezan4219 7 жыл бұрын
Good job buddy!!! Good job!!!!! You are making my path easy....Thanks a lot, man!! I was just started to read the paper.
@SirajRaval
@SirajRaval 7 жыл бұрын
thx
@_XoR_
@_XoR_ 7 жыл бұрын
It will be so cool to use this into some sort of low level hybrid fpga system so you could have it reprogram itself with each new problem. But I bet google is already working on custom hardware.
@coleflicek9053
@coleflicek9053 7 жыл бұрын
Question. This seems like a very complicated way to build nested neural nets. Where the first NN is simply the input to the memory matrix and the second NN is another input. Am I understanding that correctly or am I over simplifying things?
@luisleal4169
@luisleal4169 7 жыл бұрын
I've read the paper, seen this video several times, and still cant figure out where the "train on 2 tasks" part that you mentioned comes in, can you provide an example with some meaningful data instead of random data?(maybe some graph problem like the underground or family tree mentioned) and using the "2 separate data types" part you mentioned, sounds amazing but im having hard time figuring out where to fit that.
@lillicite-centralelille5572
@lillicite-centralelille5572 6 жыл бұрын
Yes I don't understand either. I hope we will get a response.
@yena-coco
@yena-coco 5 жыл бұрын
same idea....
@demochannel6146
@demochannel6146 7 жыл бұрын
How does it understand the order of the problems ? Like how can it understand to process text first, then graph problem ? Why it doesn't go the graph NN first ?
@poojanpatel2437
@poojanpatel2437 7 жыл бұрын
i just though abouth this thing 2 days ago and thinking if it is possible or not training a neural network to do multiple thing .. And i am so excited this can be happen.. cant wait to know more about this topic
@raju5081
@raju5081 7 жыл бұрын
will there be any live sessions again on ML and Deep Learning?
@aryopradiptagema6677
@aryopradiptagema6677 7 жыл бұрын
is there any essential difference between your implementation and deepmind released source code?
@t2kien
@t2kien 7 жыл бұрын
You defined sefl.num_heads=R as the number of read+write heads. But according to the DNC paper, R is the number of read heads only. What is the difference in your code?
@yingglay
@yingglay 7 жыл бұрын
I have two questions: 1) Could you please explain the prediction matrix in the last part of your example output? I only understand input and output random matrix. 2) You mentioned it is possible to define two problems using external memory, voice recognition translated to question, and then using question to find the underground optimal route. But I do not know how to do it, could you provide an easiest example in github repository with image recognition translated to input matrix, and then input matrix -> output matrix. I guess two predictions are needed, do not know if I understand dnc correctly, thank you very much.
@secondsandthings
@secondsandthings 7 жыл бұрын
Can this be used for 1-shot learning? Does it perform worse?
@McMurchie
@McMurchie 7 жыл бұрын
Hey Siraj, this is awesome as always having you at the forefront of the cutting edge and relaying it to us. Do you think we could further advance this by connecting two Differentiable Neural Computers together - so we could have say a graph problem, an image recognition problem, text based questioning problem and say a translation problem to have it use common learnings to apply to all 4 problems?
@joshpceeg
@joshpceeg 6 жыл бұрын
How can I use dnc on my data? I see many github examples some I get to run on python3 ubuntu 17.10 tensorflow and sonnet and my gpu but I dont know how to format a spread sheet of data or a folder with data or python sliding window for time series data?
@henrywong7286
@henrywong7286 7 жыл бұрын
This is one cool video! Thank you so much for the effort! But can someone tell me where comes the generalization characteristics of this new architecture?
@rufiromang
@rufiromang 7 жыл бұрын
hi Siraj. thx for the awesome video. do you actually have a website where you post this code?
@SirajRaval
@SirajRaval 7 жыл бұрын
see vid desc yes
@rufiromang
@rufiromang 7 жыл бұрын
thanks a lot Sir!
@mehulkumarnirala8769
@mehulkumarnirala8769 7 жыл бұрын
Can you please make a video tutorial on distributed training using tensorflow?
@jacobusstrydom7017
@jacobusstrydom7017 7 жыл бұрын
Hay man your channel is awesome!!!!!!
@stefanogrillo6040
@stefanogrillo6040 Жыл бұрын
when you start a channel as a comp scientists, but terminates as freddie mercury imitator 🤣
@hoangan07
@hoangan07 7 жыл бұрын
18:42 We are going to focus on theory, and we are going to focus on your hair. :))
@randywelt8210
@randywelt8210 7 жыл бұрын
saraj beyond stanford lectures and yann lecun presentations. 😋
@SirajRaval
@SirajRaval 7 жыл бұрын
i know right
@atifadib
@atifadib 6 жыл бұрын
Link to the paper please!
@nitink4245
@nitink4245 7 жыл бұрын
siraj please let us know if we can use , one shot learning or mann for fraud or loan defaulter prediction ??? . if so please make a comprehensive video ?
@simdimdim
@simdimdim 5 жыл бұрын
24:03 I got seasick..
@AviPars
@AviPars 7 жыл бұрын
can you do some linear algebra courses or suggest some for beginners
@fgfanta
@fgfanta 7 жыл бұрын
www.khanacademy.org/math/linear-algebra
@avatar098
@avatar098 7 жыл бұрын
KhanAcademy
@chicken6180
@chicken6180 7 жыл бұрын
homework done early looks like im bingwatching khanacadamy bois
@chonglv9766
@chonglv9766 7 жыл бұрын
Cool rap. Maybe it's better to implement the bAbI task to replace the random data.
@MarioSalvini
@MarioSalvini 6 жыл бұрын
Weights and ExtMemory ... 'to Have' and 'to Be' ;-)
@nadeemn4100
@nadeemn4100 6 жыл бұрын
Dude...y aren't u posting new videos on deep learning
@FilipeSilva1
@FilipeSilva1 7 жыл бұрын
THIS! oh yes
@arminherbsthofer2815
@arminherbsthofer2815 7 жыл бұрын
@Siraj The predictions of your network are complete nonsense. Use loss = tf.reduce_mean(tf.pow(output - dnc.o_data, 2)) to get something sensible. And why is your training data initialization so overcomplicated? final_i_data = np.random.randint(0,2,size=(2*seq_len, input_size)) and final_o_data = np.random.randint(0,2,size=(2*seq_len, input_size)) is enough.
@yeahokaysureyoubet
@yeahokaysureyoubet 7 жыл бұрын
But can this DNC learn to love Bernie?
@joespider8647
@joespider8647 7 жыл бұрын
god damn u youtube so many commercials
@spayseghost
@spayseghost 7 жыл бұрын
differentiable sounds like bad enlgish lol
@АнтонДостоевский-ж2ш
@АнтонДостоевский-ж2ш 7 жыл бұрын
Why Mac OS so nice, and windows so ugly ?
@IroshanVithanage
@IroshanVithanage 7 жыл бұрын
Windows looks great :(
@NathanK97
@NathanK97 7 жыл бұрын
because mac users are only interested in shiny things and dont look at what the thing capable of
@rrr00bb1
@rrr00bb1 7 жыл бұрын
if you are doing development, the unix underpinnings of OSX are a really big deal; as you will be deploying to linux machines (aws, google cloud,etc). whenever we get a team mate that uses windows, it always ends up turning the build into a mess; unless we are actually building binaries that will be distributed on windows machines (in which case it makes sense).
@stefanogrillo6040
@stefanogrillo6040 Жыл бұрын
when you start a channel as a comp scientists, but terminates as freddie mercury imitator 🤣
RNN Symposium 2016: Alex Graves - Differentiable Neural Computer
23:51
Rupesh Srivastava
Рет қаралды 12 М.
Generative Adversarial Networks (LIVE)
1:04:41
Siraj Raval
Рет қаралды 61 М.
IL'HAN - Qalqam | Official Music Video
03:17
Ilhan Ihsanov
Рет қаралды 700 М.
Enceinte et en Bazard: Les Chroniques du Nettoyage ! 🚽✨
00:21
Two More French
Рет қаралды 42 МЛН
How to Use Tensorflow for Classification (LIVE)
1:01:16
Siraj Raval
Рет қаралды 81 М.
Google’s Quantum Chip: Did We Just Tap Into Parallel Universes?
9:34
Visualizing transformers and attention | Talk for TNG Big Tech Day '24
57:45
Transformers (how LLMs work) explained visually | DL5
27:14
3Blue1Brown
Рет қаралды 4,1 МЛН
Neural Turing Machines (Paper Explained)
34:10
Andrei Margeloiu - Machine Learning
Рет қаралды 8 М.
Cracking Enigma in 2021 - Computerphile
21:20
Computerphile
Рет қаралды 2,5 МЛН
How to Beat Pong Using Policy Gradients (LIVE)
1:10:27
Siraj Raval
Рет қаралды 24 М.
AI "Stop Button" Problem - Computerphile
20:00
Computerphile
Рет қаралды 1,3 МЛН
MIT Introduction to Deep Learning | 6.S191
1:09:58
Alexander Amini
Рет қаралды 789 М.