Calculus - Lesson 14 | Integral of a Function | Don't Memorise

  Рет қаралды 84,973

Infinity Learn NEET

Infinity Learn NEET

Күн бұрын

Пікірлер: 86
@InfinityLearn_NEET
@InfinityLearn_NEET 4 жыл бұрын
Space flight engineers frequently use calculus when planning for long missions. To launch an exploratory probe, they must consider the different orbiting velocities of the Earth and the planet the probe is targeted for, as well as other gravitational influences like the sun and the moon. To learn more about Calculus, enrol in our full course now: bit.ly/CalculusBasics_DM To watch more videos related to Calculus, click here: bit.ly/CalculusBasics
@sahilworld_explorer
@sahilworld_explorer 2 жыл бұрын
woooooo
@egregiouslytalented2381
@egregiouslytalented2381 4 жыл бұрын
u must have 10 million subscribers based on ur concept teaching .i am a 13 yr old learning calculus u guys r excellent
@exoticcoder5365
@exoticcoder5365 Жыл бұрын
I wish I could have this kind of access to knowledge at your age
@crisscringle
@crisscringle 5 жыл бұрын
Explanation for bonus question at the end :) I did the upper sum rectangles for the question, so I took the maximum x coordinate to find y f(x) = x^2, so.... 1st rectangle: Max X coord = dx y = f(dx) = (dx)^2 2nd rectangle: Max X coord = 2dx y = f(2dx) = (2dx)^2 3rd rectangle: Max X coord = 3dx y = f(3dx) = (3dx)^2 Nth rectangle: Max X coord = ndx y = f(ndx) = (ndx)^2 As you know, to get total area, you get the area of the rectangles and then add them up. So height * width; Width = dx, and height is the y coordinate of each rectangle... 1st rectangle = (dx)^2 * dx 2nd rectangle = (2dx)^2 * dx Nth rectangle = (ndx)^2 * dx (dx)^2*dx + (2dx)^2*dx + ...(ndx)^2*dx Then expand the squared terms... (I expand (dx)^2 = d^2 x^2) 1 d^2 x^2 (dx) + 4 d^2 x^2 (dx) + ... n^2 d^2 x^2 (dx) So we get a common factor of square series, which we can take out... [1 + 4 + 9 + ... n^2] (d^2 x^2) (dx) We can also simplify d^2 x^2 back to (dx)^2, so we can multiply it by dx... [1 + 4 + 9 + ... n^2] (dx)^3 We can replace the square numbers with the formula for the series of n square numbers... [(n(n + 1)(2n + 1)) / 6] (dx)^3 The width of each rectangle (dx) is the range between the limits (0 to 4) divided by the number of rectangles (n), so dx = 4/n. Sub that in... [(n(n + 1)(2n + 1)) / 6] (4/n)^3 [(n(n + 1)(2n + 1)) / 6] (64/n^3) (64n(2n^2 + 3n + 1)) / 6n^3 (32(2n^2 + 3n + 1)) / 3n^2 (64n^2 + 96n + 32) / 3n^2 Which we can separate to be... 64n^2/3n^2 + 96n/3n^2 + 32/3n^2 64/3 + 32/n + 32/3n^2 As n tends to infinity, the two last terms approach 0: 32/n and 32/3n^2 Therefore, answer is 64/3
@nabanitachowdhury3854
@nabanitachowdhury3854 4 жыл бұрын
Your answer is correct but you did a mistake in writing. It would have been (64n2+96n+32)/3n2 and not (64n2+96n+1)/3n2
@crisscringle
@crisscringle 4 жыл бұрын
Nabanita Chowdhury thanks, have corrected it :)
@crisscringle
@crisscringle 4 жыл бұрын
OBIIOS and removed the exclamation mark 😂
@crisscringle
@crisscringle 4 жыл бұрын
OverComplicated dude In this case, the calculations for the upper sum and the lower sum are the same. In the previous example in the video (0:20), we needed to integrate between 2 and 6. Because we were starting from 2, there was a difference between the upper sum and the lower sum. For Lower Sum, x coordinates were: 2, 2 + dx, 2 + 2dx... 2 + ndx For Upper Sum, x coordinates were: 2 + dx, 2 + 2dx... 2 + ndx The starting point of the integral determines whether the upper and lower sums will be the same. In our case of the graph of x^2, the x coordinates would be: X for Lower Sum: 0, 0 + dx, 0 + 2dx... 0 + ndx X for Upper Sum: 0 + dx, 0 + 2dx... 0 + ndx Because our integration is starting from 0, there is no actual difference once you remove the unnecessary zeroes. Both of them will end up like: dx, 2dx, ... ndx
@hemsingh6785
@hemsingh6785 5 жыл бұрын
This how we should be taught early.......great work thanks teacher 😍
@skilz8098
@skilz8098 4 жыл бұрын
The integral is 21.333... or 21 + (1/3) units cubed. Since the function is f(x) = x^2 and its indefinite integral is (1/3)x^3 + C we now use this to find the definite integral between [a,b]. W can do so by applying the upper and lower bounds of the limits of integration and then take their differences. The lower bound will evaluate to 0. (1/3)*0^3 = 0. Since we know that for any x - 0 = x; we only need to consider and evaluate its upper bound. Therefore: F(x) @ b = (1/3)*(4)^3 = (1/3)*64 = 64/3 = 21.333... or 21 + (1/3) units cubed since F(x) = (1/3)x^3 + C. What happened to the Constant of Integration? When we apply F(b) - F(a), we will have the difference between C2 and C1. Since C1 = C2 the difference will result in 0. Thus, we can easily omit it leaving us with a definite volume since we integrated an area function. f(x) = x^2 is quadratic which is an area function and f(x) = x^3 is cubic function which is a volume function. A polynomial is defined by its highest ordered exponent which is understood both Algebraically and Geometrically. Therefore, for the answer to be correct, we must apply units^3 to the finale definite value otherwise the units will be wrong giving an incorrect answer. If you have two quantities such as 10 and 30 and these values aren't scalar and we try to perform some arithmetic... we have to know their dimensionality in order to apply any operation or transformation to them. We have to convert them into the same units in order to do the appropriate arithmetic. For example, let's say we have an area A = 10 m^2 and we have a volume V = 30 mm^3. How would you do the following: A+B, A*B, A-B, A/B, etc... if we didn't specify the units. So just saying 64/3 is the integration is wrong. We must specify 64/3 units^3 for it to be correct! The units are they inches, centimeters, miles, kilometers, etc...? This is just as important as the actual value!
@padmajamohapatra7179
@padmajamohapatra7179 Жыл бұрын
Salute you to write biggest comment of the year
@skilz8098
@skilz8098 Жыл бұрын
@@padmajamohapatra7179It was barely a paragraph.
@bruhifysbackup
@bruhifysbackup 7 ай бұрын
In graphs, we don't write out the measurement nor the dimension were dealing with. The are under the curve doesn't have to be ³.
@amogelangsekhu3906
@amogelangsekhu3906 2 жыл бұрын
They really meant it, when they said Don't memorize. this was so helpful thank you 🔥❤️👌
@neerxj
@neerxj 4 жыл бұрын
thanks for removing my fear of calculus
@deepudasari1117
@deepudasari1117 4 жыл бұрын
episode 1: This is so easy Episode 2: what the heck is a function? episode 3:this is getting a little confusing. episode 4: no way I can understand. this is stupid.
@dioptre
@dioptre 3 жыл бұрын
what grade are you in?
@Vibranium375
@Vibranium375 3 жыл бұрын
Well to me all 17 are very easy lol
@rajatpathak6524
@rajatpathak6524 4 жыл бұрын
Awesome work......I wish we had this kind of explanation ....when we were at school....❤️❤️❤️
@InfinityLearn_NEET
@InfinityLearn_NEET 4 жыл бұрын
Thank you so much Rajat for your appreciation. We are glad that you understood the concept. For more videos, please visit our website - dontmemorise.com/
@samehmekawy1049
@samehmekawy1049 5 жыл бұрын
It will be 64/3 Thank alot for your videos
@anoopaji1469
@anoopaji1469 4 жыл бұрын
Very useful. Thanks for the precious effort.
@InfinityLearn_NEET
@InfinityLearn_NEET 4 жыл бұрын
You're most welcome, Anoop! Thanks for your support and Keep watching!! 🙂🙂
@صفايسرى-ع6ح
@صفايسرى-ع6ح 4 жыл бұрын
بسم الله الرحمان الرحيم ولله ملك السماوات والأرض يغفر لمن يشاء ويعذب من يشاء وكان الله غفورا رحيما
@akavyascv0415
@akavyascv0415 2 жыл бұрын
You save my day mam tq so much ...
@krishchauhan9209
@krishchauhan9209 3 жыл бұрын
Mam please give us the solution of the problem given by you in the end of the video. Please give it in a long form just like you derived 16-8/n. Otherwise the video was 👍
@sachinkataria8867
@sachinkataria8867 2 жыл бұрын
Thank you so much. All videos are awesome
@saipatil8751
@saipatil8751 4 жыл бұрын
Your videos are so helpful. Keep teaching.
@InfinityLearn_NEET
@InfinityLearn_NEET 4 жыл бұрын
Thank you so much Sai for your appreciation. We are really happy to hear that it was Helpful to you. We are glad that you understood the concept. You motivate us to do better. Keep watching our videos. 😊😊
@quickSilverXMen
@quickSilverXMen 5 жыл бұрын
This is call complete concept 🌞🌞
@marrapujayadeep9385
@marrapujayadeep9385 4 жыл бұрын
+64/3 Good teaching mam
@RkVarma-pg2rq
@RkVarma-pg2rq 2 жыл бұрын
sir please upload Enginnering CORE SUBJECTS ALSO
@ninoreyrequirme9996
@ninoreyrequirme9996 5 жыл бұрын
The integral of X² is X³/3 so.. 4³/3= 64/3 and 0³/3=0 64/3+0= The area is = 64/3
@herilmistry1263
@herilmistry1263 4 жыл бұрын
Thank you so much ...
@skilz8098
@skilz8098 4 жыл бұрын
The Integral of f(x) = x^2 from [0,4] IS NOT 64/3. The Integral of f(x) = x^2 from [0,4] IS 64/3 units^3. You must specify the units! And it's not Area, In the example from the Video, it is Volume! What if we were to do some arithmetic of two integrals: F(x) from [2,5] + G(x) from [3,9]... where f(x) = 2x^2 and g(x) = 4x^3 - 2x^2 + 9? F(x) = (2/3)x^3 from [2,5] = (2/3)(5)^3 - (2/3)(2)^3 = (2/3)(125) - (2/3)(8) = (250/3) - (16/3) = (234/3) = 78 units^3 G(x) = (4/4)x^4 - (2/3)x^3 + 9x from [3,9] = { 9^4 - (2/3)9^3 + 9(9)} - { 3^4 - (2/3)3^3 + 9(3)} = (6561 - (1458/3) + 81) - (81 - (54/3) + 27) = (6561 - 486 + 81) - (81 - 18 + 27) = (6156) - (90) = 6066 units^4. So if we didn't specify the units^2, units^3, ... units^n how would we be able to determine to perform F(x) + G(x) without knowing the units? If the unit type is unknown we can generically just say units... But what if F(x) is in kilometers and G(x) is in millimeters? Now we have a problem if we don't specify the units! By specifying the units we are then able to convert from one unit to the other... Then by doing so would we then be able to perform F(x) (O) G(x) where (O) can be any operator.
@blmandar
@blmandar 5 жыл бұрын
I hope I've understood something.......Well, I have............Haven't I ? Great, I'm confused again.
@carguy7480
@carguy7480 5 жыл бұрын
Same here
@paristar3079
@paristar3079 4 жыл бұрын
The quote on your profile is incorrect. Everything not always goes according to you or your behavior or your discipline.
@amitpandey3250
@amitpandey3250 4 жыл бұрын
Hun xm4444444kkkopeopklekle
@amitpandey3250
@amitpandey3250 4 жыл бұрын
@@paristar3079 jekjkjkkkk
@anastasiaanautodidact9856
@anastasiaanautodidact9856 4 жыл бұрын
Kind of same here... No examples... Just abstract content..
@sanju6337
@sanju6337 5 жыл бұрын
Please do vedios on dynamics
@md.zahidulislam3548
@md.zahidulislam3548 3 жыл бұрын
thank you
@Ramzaoui
@Ramzaoui 5 жыл бұрын
thanks from morocco
@dhanrajambhore3441
@dhanrajambhore3441 3 жыл бұрын
Area of integral : 64/3 =21.3
@Kivhknn
@Kivhknn 5 жыл бұрын
which software r u using????plxxx
@golumandal4836
@golumandal4836 5 жыл бұрын
Magnificent...
@madurir3744
@madurir3744 4 жыл бұрын
Can u please tell me the derivations of the calculus in easy way it was little confusing for me
@airamunazza7884
@airamunazza7884 3 жыл бұрын
Mam we shall divide this function in to many parts horizontally
@dspopnrendi1725
@dspopnrendi1725 3 жыл бұрын
7:30 mam according to my calculation the answer is (n-2)16 then what after this?
@karthickthangavel2259
@karthickthangavel2259 2 жыл бұрын
What is difference between sum of area and sum of limits
@peterford3478
@peterford3478 2 жыл бұрын
Genius.
@puskarbasak3712
@puskarbasak3712 3 жыл бұрын
The integral function is approximately equal to 21.33 unit
@aderonkeadeniyi2428
@aderonkeadeniyi2428 Жыл бұрын
I LIKE IT
@aderonkeadeniyi2428
@aderonkeadeniyi2428 Жыл бұрын
0:02 0:03 0:03 0:03
@sukhmeetsinghsodhi3261
@sukhmeetsinghsodhi3261 4 жыл бұрын
answer of the question asked is 64/3
@padmajamohapatra7179
@padmajamohapatra7179 Жыл бұрын
64/3 is the answer to the integral
@ninanakagawa8943
@ninanakagawa8943 3 жыл бұрын
where does the ( 16 + 8/n) come from
@AmanSharma-we9nk
@AmanSharma-we9nk 4 жыл бұрын
Can anyone pls share the solution of the problem given in last with the use of lower or upper sum
@crisscringle
@crisscringle 4 жыл бұрын
Aman Sharma In this case, lower and upper sum are actually the same f(x) = x^2, so.... 1st rectangle: Max X coord = dx y = f(dx) = (dx)^2 2nd rectangle: Max X coord = 2dx y = f(2dx) = (2dx)^2 3rd rectangle: Max X coord = 3dx y = f(3dx) = (3dx)^2 Nth rectangle: Max X coord = ndx y = f(ndx) = (ndx)^2 As you know, to get total area, you get the area of the rectangles and then add them up. So height * width; Width = dx, and height is the y coordinate of each rectangle... 1st rectangle = (dx)^2 * dx 2nd rectangle = (2dx)^2 * dx Nth rectangle = (ndx)^2 * dx (dx)^2*dx + (2dx)^2*dx + ...(ndx)^2*dx Then expand the squared terms... (I expand (dx)^2 = d^2 x^2) 1 d^2 x^2 (dx) + 4 d^2 x^2 (dx) + ... n^2 d^2 x^2 (dx) So we get a common factor of square series, which we can take out... [1 + 4 + 9 + ... n^2] (d^2 x^2) (dx) We can also simplify d^2 x^2 back to (dx)^2, so we can multiply it by dx... [1 + 4 + 9 + ... n^2] (dx)^3 We can replace the square numbers with the formula for the series of n square numbers... [(n(n + 1)(2n + 1)) / 6] (dx)^3 The width of each rectangle (dx) is the range between the limits (0 to 4) divided by the number of rectangles (n), so dx = 4/n. Sub that in... [(n(n + 1)(2n + 1)) / 6] (4/n)^3 [(n(n + 1)(2n + 1)) / 6] (64/n^3) (64n(2n^2 + 3n + 1)) / 6n^3 (32(2n^2 + 3n + 1)) / 3n^2 (64n^2 + 96n + 32) / 3n^2 Which we can separate to be... 64n^2/3n^2 + 96n/3n^2 + 32/3n^2 64/3 + 32/n + 32/3n^2 As n tends to infinity, the two last terms approach 0: 32/n and 32/3n^2 Therefore, answer is 64/3
@kavyasangeet
@kavyasangeet 3 жыл бұрын
@@crisscringle you are awesome 😮
@gauravm3333
@gauravm3333 2 жыл бұрын
@@crisscringle good work man by the way thanks for explanation for this man and us
@crisscringle
@crisscringle 2 жыл бұрын
@@gauravm3333 Glad the explanation was helpful! :)
@shivangishivangi4267
@shivangishivangi4267 Жыл бұрын
​@@crisscringle Thanks for the explanation,😭🙏
@pwsk
@pwsk 3 жыл бұрын
Wow!
@shitalmandalia9849
@shitalmandalia9849 3 жыл бұрын
I am so curious about maths, science and physics and I want to become a aerospace engineer I am in 8th grade, I am trying my hardest to learn calculus
@stuartsandskill270
@stuartsandskill270 3 жыл бұрын
hey budy ,just to clesrify i am saying that aerospace engineer who is involved in the making of flight ,rocket etc.if you are really interested in physics and science,the pursue physics or maths as a core field
@anilsharma-ev2my
@anilsharma-ev2my 4 жыл бұрын
Integration continues on and on up to infinity What will we get ?
@codecatt
@codecatt 5 жыл бұрын
Hello teacher will you kindly tell me what video studio you're using??
@StudentWalaGamer
@StudentWalaGamer 5 жыл бұрын
First👍👍
@shahnirmalmtb
@shahnirmalmtb 5 жыл бұрын
64/3
@pranavtube3302
@pranavtube3302 2 жыл бұрын
Solution to the problem. 21.33333....
@blackcat5771
@blackcat5771 5 жыл бұрын
1/3(x^3)
@ryanme5645
@ryanme5645 5 жыл бұрын
=3
@adityayadav3388
@adityayadav3388 2 жыл бұрын
8
@mdmia1526
@mdmia1526 4 жыл бұрын
i actually can solve it
@sukuruman9412
@sukuruman9412 Жыл бұрын
Maassss
@chitraa5715
@chitraa5715 2 жыл бұрын
Attendance of students who regret for taking science in 11th 😖 👇
@hemsingh6785
@hemsingh6785 5 жыл бұрын
64/3
@wesleychan3819
@wesleychan3819 3 жыл бұрын
64/3
Calculus - Lesson 13 | Integral of a Function | Don't Memorise
7:23
Infinity Learn NEET
Рет қаралды 163 М.
The Best Band 😅 #toshleh #viralshort
00:11
Toshleh
Рет қаралды 22 МЛН
How Strong Is Tape?
00:24
Stokes Twins
Рет қаралды 96 МЛН
It works #beatbox #tiktok
00:34
BeatboxJCOP
Рет қаралды 41 МЛН
What does area have to do with slope? | Chapter 9, Essence of calculus
12:39
Understand Calculus in 35 Minutes
36:22
The Organic Chemistry Tutor
Рет қаралды 3,8 МЛН
Can You Prove The Area Of A Circle Using CALCULUS??
7:57
The Para Tutor
Рет қаралды 21 М.
One Cold Open That Perfectly Sums Up Each Character | Brooklyn Nine-Nine
12:27
Brooklyn Nine-Nine
Рет қаралды 2,1 МЛН
The Math Behind Speeding: More is Less
8:50
The Scribbled Equation
Рет қаралды 140 М.
What the 1869 MIT Entrance Exam Reveals About Math Today
13:51
polymathematic
Рет қаралды 39 М.
Calculus - Lesson 11 | Derivative as a Function | Don't Memorise
11:13
Infinity Learn NEET
Рет қаралды 85 М.
Mastering Calculus: An Introduction to Integrals
30:41
Math and Science
Рет қаралды 24 М.