Dual basis

  Рет қаралды 45,984

Dr Peyam

Dr Peyam

Күн бұрын

Пікірлер: 83
@chachomask
@chachomask 5 жыл бұрын
Rumors has it that this guy has infinite amount of boards he can just switch between
@hansbaeker9769
@hansbaeker9769 2 жыл бұрын
I'm getting close to retirement and am determined to make relearning the math I've forgotten a retirement goal. So now I'm reviewing dual vector spaces which is one area I've pretty much forgotten. This is definitely helping.
@sepidehtje
@sepidehtje 4 жыл бұрын
Thank you so much for this amazing explanation! My own professor just glossed over it by saying "there exists a basis" that's it. It was driving me wild. Now THIS is a proper proof. You are a lifesaver.
@FT029
@FT029 4 жыл бұрын
The visualization of functions as pictures (with all the dots) was extremely helpful! After that the proofs of linear independence and spanning became more intuitive.
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Peyam, can you do 100 dual basis in one take?
@drpeyam
@drpeyam 5 жыл бұрын
Hahahahahahahaha
@zehrademirhan600
@zehrademirhan600 4 жыл бұрын
This lecture is awesome:) i really don't understand from my instructor but you made all of the things clear . Thank you...
@jubachoomba
@jubachoomba Жыл бұрын
Reisz representation theorem pops right out: bravo, Prof!
@rohitkantipudi6605
@rohitkantipudi6605 4 жыл бұрын
this deserves way more views great explanation
@apappas4482
@apappas4482 4 жыл бұрын
Thank you for explaining slowly and clearly.
@williamhogrider4136
@williamhogrider4136 Жыл бұрын
This is very well explained, so now I have an idea on dual space and dual basis but I'd like to revisit this video again, it's awesome
@drpeyam
@drpeyam Жыл бұрын
Thank you!!!
@diegoviejocarretero7629
@diegoviejocarretero7629 3 жыл бұрын
thanks for sounding so happy, I really needed that to cheer me up studyng for this
@adebayoemmanuel911
@adebayoemmanuel911 Жыл бұрын
I've been looking for a way to picture a dual basis. Thank you so much for this
@klam77
@klam77 4 жыл бұрын
excellent; better than my textbook!
@owen5106
@owen5106 Жыл бұрын
just found your channel, im reading linear algebra done right on my own, your a G my dude. so helpful tyvm
@drpeyam
@drpeyam Жыл бұрын
Happy to help!
@basakatik4770
@basakatik4770 5 жыл бұрын
You are a hero Dr. Peyam! You made again everything is visible! Are you sure you are human!!!
@speedbird7587
@speedbird7587 11 ай бұрын
Thanks for the lecture. It was full of excitement and energy. I really liked it.
@hojungkim241
@hojungkim241 4 жыл бұрын
I have a question in proving a1=f(v1) in 17:04. Can we use f(v1)=a1f1(v1)+…+anfn(vn) before we prove any element in V* can be expressed by linear combination of ß*? I mean, we were on the way to prove f=a1f1+…anfn but we used that before finish the proof.
@Ruvine_
@Ruvine_ 2 жыл бұрын
AWESOME GRAPH! I had the topic of duals on class and didn't understand a thing. Then I watched 4 other youtube videos and understand nothing to see your graph and understand everything instanlty.
@drpeyam
@drpeyam 2 жыл бұрын
Thanks so much!! Yes, the graph really cleared it up for me
@arnavarora7023
@arnavarora7023 Жыл бұрын
These videos are really helpful. Thanks a lot.
@gorkifreire1380
@gorkifreire1380 3 жыл бұрын
Amazing explanation thank you very much
@arseniikvachan
@arseniikvachan 4 жыл бұрын
What the hell? Why should I go to university, if I have Internet with Dr. Peyam. Infinite thanks to you.
@sundayscrafter1779
@sundayscrafter1779 5 жыл бұрын
Now is time for the double dual teacher PiM :) It’s got pretty interesting properties :)
@drpeyam
@drpeyam 5 жыл бұрын
Already up!
@donqe6439
@donqe6439 Ай бұрын
better than my professor. you should become a professor man
@drpeyam
@drpeyam Ай бұрын
Awwwww I am actually 😄
@PascalsLaptop
@PascalsLaptop Жыл бұрын
thank you very much for making these videos
@estebangimenez3714
@estebangimenez3714 5 жыл бұрын
u saved my life, congrats from Spain.
@thehsuisbhsulsh
@thehsuisbhsulsh 2 жыл бұрын
How and why at 6:33 fi(vj) should be precisely equal to 1 when i=j. Why not some other value as I am unable to understand that?
@drpeyam
@drpeyam 2 жыл бұрын
By definition
@thehsuisbhsulsh
@thehsuisbhsulsh 2 жыл бұрын
Ok I got it now. Earlier I was thinking that what if we choose some function say f(x)=2x +3 then it won't guarantee that I will get fi(vi) = 1 precisely. But now I got it that we won't choose such a function as basis rather we would choose a function , to qualify as basis which would provide me with result fi(vi) =1 precisely. Thanks for it. But how can say with surity that we will always find such functions ( i.e. fi(vi)=1 ) in our dual space to qualify the criteria to be the basis.
@amergoel3117
@amergoel3117 Жыл бұрын
thank you so much for making this video you saved me
@thecarlostheory
@thecarlostheory Жыл бұрын
Vey awesome video. Thx a lot, ur helping me so much :D
@margueritedepompadour7031
@margueritedepompadour7031 9 ай бұрын
Thanks a lot! I never got what those notations really meant
@MoonLight-sw6pc
@MoonLight-sw6pc 5 жыл бұрын
U r right! linear algebra is beautiful :) شكرا
@QT-yt4db
@QT-yt4db 2 жыл бұрын
Very helpful... Thank you...
@lazarsavic6613
@lazarsavic6613 2 жыл бұрын
Extremely helpful! :)
@dgrandlapinblanc
@dgrandlapinblanc 5 жыл бұрын
Pretty cool. Thank you very much.
@AbdelrahmanAnbar
@AbdelrahmanAnbar Ай бұрын
this is amazing
@sekhar018
@sekhar018 2 жыл бұрын
Excellent ✌️
@justinbond7456
@justinbond7456 2 жыл бұрын
awesome lecture, thanks! however i have difficulty seeing that it is enough to show f(vi) = g(vi) for the spanning proof. is this specifically because of the linearity of the functionals?
@arechilasalvia8331
@arechilasalvia8331 3 жыл бұрын
Do one video on quotient space
@112BALAGE112
@112BALAGE112 5 жыл бұрын
Are you planning to discuss differential forms?
@drpeyam
@drpeyam 5 жыл бұрын
Not really
@TheNachoesuncapo
@TheNachoesuncapo 5 жыл бұрын
This would be my summer fun!!!
@111abdurrahman
@111abdurrahman 4 жыл бұрын
Dr Peyam, I have a question. They say that dual space of Rn is Rn ... but while doing proof we use CS inequality and we assume the standard euclidean norm on Rn. What if that norm on V is 1-norm, would then be the norm on dual space.... 1-norm? or sup-norm??
@drpeyam
@drpeyam 4 жыл бұрын
Any two norms on R^n are equivalent, so it doesn’t matter which one we use
@gordonchan4801
@gordonchan4801 5 жыл бұрын
Is it like dual citizenship?
@drpeyam
@drpeyam 5 жыл бұрын
Hahaha
@blackpenredpen
@blackpenredpen 5 жыл бұрын
LOLLL
@mario1415
@mario1415 5 жыл бұрын
Dr. Peyam! Now make a video about the Mackey topology! =)
@tom13king
@tom13king 5 жыл бұрын
When would you do this at university? We didn't do it in first year Linear Algebra, would it be done in second year?
@drpeyam
@drpeyam 5 жыл бұрын
Second year :)
@tom13king
@tom13king 5 жыл бұрын
@@drpeyam Looking forward to it then.
@chiruvolusridevi8163
@chiruvolusridevi8163 4 жыл бұрын
only presentation I found , that goes into the details, step by step. I didnt follow this: In the first graph of f(v) vs v1,v2...vN the ordinates are points f(v1), .... . Later f(v1) becomes kronecker delta & f(v1) = 1. How ?
@drpeyam
@drpeyam 4 жыл бұрын
No f1 becomes kronecker. The first step is for general f
@climitod8524
@climitod8524 7 ай бұрын
AH dangit I wish you did a video however on a dual map as that's the definition Im having trouble understanding how its all mapped and stuff.
@drpeyam
@drpeyam 7 ай бұрын
Check out the playlist
@thepositron5676
@thepositron5676 5 жыл бұрын
Great explanation! Thank you :D
@sandorszabo2470
@sandorszabo2470 5 жыл бұрын
Hi Peyam, Do you plan to talk about multilinear algebra? I hope so :-)
@drpeyam
@drpeyam 5 жыл бұрын
I’ll talk about multilinearity of the Determinant at some point!
@r75shell
@r75shell 5 жыл бұрын
shouldn't f(2v) = 2f(v)? this means that f(2v1) = 2f(v1), thus not equal to zero.
@drpeyam
@drpeyam 5 жыл бұрын
At which point?
@r75shell
@r75shell 5 жыл бұрын
@@drpeyam let me rephrase, if f1, f2, f3.. (basis) all equal to zero everywhere except basis vectors, how could some LT be nonzero to anywhere else, like 2 times v1 - doubled basis first vector? I think it should be f1(k*v1) = k for any k, and zero everywhere else.
@drpeyam
@drpeyam 5 жыл бұрын
By everywhere else I mean zero on all the basis vectors other than v1
@r75shell
@r75shell 5 жыл бұрын
@@drpeyam so, you want to say that f1 is some LT such that it has 0 at any basis vector except v1, and it is equal to 1 at vector v1, and f1 of any other vector have a value as it fit? Then, would be nice to say why f1 exists and is it unique and so on. So f1(k v1) = kf1(v1) = k just because it's one of properties of LT. Oh, looks like f1 is non zero in many places, not only for vectors kv1, that's why you say like that. Anyway, I was confused and now I got it.
@schlechtestergtaspielerdek3851
@schlechtestergtaspielerdek3851 Жыл бұрын
This is electroboom for mathematicians or cs students XD. THx
@lynny7868
@lynny7868 Жыл бұрын
2:30, 6:05
@rodrigodiazarancibia5486
@rodrigodiazarancibia5486 Жыл бұрын
Thanks man!
@AkshayKumar-pt6fz
@AkshayKumar-pt6fz 5 жыл бұрын
This is so good!! 👍👍
@snehadwivedi5894
@snehadwivedi5894 4 жыл бұрын
Much needed
@bhargav7478
@bhargav7478 4 жыл бұрын
so dual space of vector space V is basically adam world of origin world a.k.a. vector space V.
@Victual88
@Victual88 3 ай бұрын
Thanks Peyam! [+1 sub] :)
@drpeyam
@drpeyam 3 ай бұрын
Thank you!!! 😊
@ziminfan1664
@ziminfan1664 5 жыл бұрын
You r awesome
@drpeyam
@drpeyam 5 жыл бұрын
❤️
@youssefbenhachem993
@youssefbenhachem993 5 жыл бұрын
Thanks . That's awesome
@qrubmeeaz
@qrubmeeaz 3 жыл бұрын
Yipeee!!
Dual Basis Example
11:41
Dr Peyam
Рет қаралды 43 М.
Double Dual
15:58
Dr Peyam
Рет қаралды 20 М.
🎈🎈🎈😲 #tiktok #shorts
0:28
Byungari 병아리언니
Рет қаралды 4,5 МЛН
"Идеальное" преступление
0:39
Кик Брейнс
Рет қаралды 1,4 МЛН
The Origin of God: Humanity's Eternal Quest for the Divine #FaithVsScience
21:42
One Planet One Life One Body
Рет қаралды 1,1 М.
Order, Dimension, Rank, Nullity, Null Space, Column Space of a matrix
14:04
Vector Space
18:04
Prime Newtons
Рет қаралды 99 М.
Dual Basis - Covariant & Contravariant Components
14:55
The Cynical Philosopher
Рет қаралды 10 М.
Annihilator
17:57
Dr Peyam
Рет қаралды 10 М.
An introduction to vectors and dual vectors
10:13
Ox educ
Рет қаралды 33 М.
Duality in Linear Algebra: Dual Spaces, Dual Maps, and All That
27:12
The deeper meaning of matrix transpose
25:41
Mathemaniac
Рет қаралды 397 М.