Rumors has it that this guy has infinite amount of boards he can just switch between
@hansbaeker97692 жыл бұрын
I'm getting close to retirement and am determined to make relearning the math I've forgotten a retirement goal. So now I'm reviewing dual vector spaces which is one area I've pretty much forgotten. This is definitely helping.
@sepidehtje4 жыл бұрын
Thank you so much for this amazing explanation! My own professor just glossed over it by saying "there exists a basis" that's it. It was driving me wild. Now THIS is a proper proof. You are a lifesaver.
@FT0294 жыл бұрын
The visualization of functions as pictures (with all the dots) was extremely helpful! After that the proofs of linear independence and spanning became more intuitive.
@blackpenredpen5 жыл бұрын
Peyam, can you do 100 dual basis in one take?
@drpeyam5 жыл бұрын
Hahahahahahahaha
@zehrademirhan6004 жыл бұрын
This lecture is awesome:) i really don't understand from my instructor but you made all of the things clear . Thank you...
@jubachoomba Жыл бұрын
Reisz representation theorem pops right out: bravo, Prof!
@rohitkantipudi66054 жыл бұрын
this deserves way more views great explanation
@apappas44824 жыл бұрын
Thank you for explaining slowly and clearly.
@williamhogrider4136 Жыл бұрын
This is very well explained, so now I have an idea on dual space and dual basis but I'd like to revisit this video again, it's awesome
@drpeyam Жыл бұрын
Thank you!!!
@diegoviejocarretero76293 жыл бұрын
thanks for sounding so happy, I really needed that to cheer me up studyng for this
@adebayoemmanuel911 Жыл бұрын
I've been looking for a way to picture a dual basis. Thank you so much for this
@klam774 жыл бұрын
excellent; better than my textbook!
@owen5106 Жыл бұрын
just found your channel, im reading linear algebra done right on my own, your a G my dude. so helpful tyvm
@drpeyam Жыл бұрын
Happy to help!
@basakatik47705 жыл бұрын
You are a hero Dr. Peyam! You made again everything is visible! Are you sure you are human!!!
@speedbird758711 ай бұрын
Thanks for the lecture. It was full of excitement and energy. I really liked it.
@hojungkim2414 жыл бұрын
I have a question in proving a1=f(v1) in 17:04. Can we use f(v1)=a1f1(v1)+…+anfn(vn) before we prove any element in V* can be expressed by linear combination of ß*? I mean, we were on the way to prove f=a1f1+…anfn but we used that before finish the proof.
@Ruvine_2 жыл бұрын
AWESOME GRAPH! I had the topic of duals on class and didn't understand a thing. Then I watched 4 other youtube videos and understand nothing to see your graph and understand everything instanlty.
@drpeyam2 жыл бұрын
Thanks so much!! Yes, the graph really cleared it up for me
@arnavarora7023 Жыл бұрын
These videos are really helpful. Thanks a lot.
@gorkifreire13803 жыл бұрын
Amazing explanation thank you very much
@arseniikvachan4 жыл бұрын
What the hell? Why should I go to university, if I have Internet with Dr. Peyam. Infinite thanks to you.
@sundayscrafter17795 жыл бұрын
Now is time for the double dual teacher PiM :) It’s got pretty interesting properties :)
@drpeyam5 жыл бұрын
Already up!
@donqe6439Ай бұрын
better than my professor. you should become a professor man
@drpeyamАй бұрын
Awwwww I am actually 😄
@PascalsLaptop Жыл бұрын
thank you very much for making these videos
@estebangimenez37145 жыл бұрын
u saved my life, congrats from Spain.
@thehsuisbhsulsh2 жыл бұрын
How and why at 6:33 fi(vj) should be precisely equal to 1 when i=j. Why not some other value as I am unable to understand that?
@drpeyam2 жыл бұрын
By definition
@thehsuisbhsulsh2 жыл бұрын
Ok I got it now. Earlier I was thinking that what if we choose some function say f(x)=2x +3 then it won't guarantee that I will get fi(vi) = 1 precisely. But now I got it that we won't choose such a function as basis rather we would choose a function , to qualify as basis which would provide me with result fi(vi) =1 precisely. Thanks for it. But how can say with surity that we will always find such functions ( i.e. fi(vi)=1 ) in our dual space to qualify the criteria to be the basis.
@amergoel3117 Жыл бұрын
thank you so much for making this video you saved me
@thecarlostheory Жыл бұрын
Vey awesome video. Thx a lot, ur helping me so much :D
@margueritedepompadour70319 ай бұрын
Thanks a lot! I never got what those notations really meant
@MoonLight-sw6pc5 жыл бұрын
U r right! linear algebra is beautiful :) شكرا
@QT-yt4db2 жыл бұрын
Very helpful... Thank you...
@lazarsavic66132 жыл бұрын
Extremely helpful! :)
@dgrandlapinblanc5 жыл бұрын
Pretty cool. Thank you very much.
@AbdelrahmanAnbarАй бұрын
this is amazing
@sekhar0182 жыл бұрын
Excellent ✌️
@justinbond74562 жыл бұрын
awesome lecture, thanks! however i have difficulty seeing that it is enough to show f(vi) = g(vi) for the spanning proof. is this specifically because of the linearity of the functionals?
@arechilasalvia83313 жыл бұрын
Do one video on quotient space
@112BALAGE1125 жыл бұрын
Are you planning to discuss differential forms?
@drpeyam5 жыл бұрын
Not really
@TheNachoesuncapo5 жыл бұрын
This would be my summer fun!!!
@111abdurrahman4 жыл бұрын
Dr Peyam, I have a question. They say that dual space of Rn is Rn ... but while doing proof we use CS inequality and we assume the standard euclidean norm on Rn. What if that norm on V is 1-norm, would then be the norm on dual space.... 1-norm? or sup-norm??
@drpeyam4 жыл бұрын
Any two norms on R^n are equivalent, so it doesn’t matter which one we use
@gordonchan48015 жыл бұрын
Is it like dual citizenship?
@drpeyam5 жыл бұрын
Hahaha
@blackpenredpen5 жыл бұрын
LOLLL
@mario14155 жыл бұрын
Dr. Peyam! Now make a video about the Mackey topology! =)
@tom13king5 жыл бұрын
When would you do this at university? We didn't do it in first year Linear Algebra, would it be done in second year?
@drpeyam5 жыл бұрын
Second year :)
@tom13king5 жыл бұрын
@@drpeyam Looking forward to it then.
@chiruvolusridevi81634 жыл бұрын
only presentation I found , that goes into the details, step by step. I didnt follow this: In the first graph of f(v) vs v1,v2...vN the ordinates are points f(v1), .... . Later f(v1) becomes kronecker delta & f(v1) = 1. How ?
@drpeyam4 жыл бұрын
No f1 becomes kronecker. The first step is for general f
@climitod85247 ай бұрын
AH dangit I wish you did a video however on a dual map as that's the definition Im having trouble understanding how its all mapped and stuff.
@drpeyam7 ай бұрын
Check out the playlist
@thepositron56765 жыл бұрын
Great explanation! Thank you :D
@sandorszabo24705 жыл бұрын
Hi Peyam, Do you plan to talk about multilinear algebra? I hope so :-)
@drpeyam5 жыл бұрын
I’ll talk about multilinearity of the Determinant at some point!
@r75shell5 жыл бұрын
shouldn't f(2v) = 2f(v)? this means that f(2v1) = 2f(v1), thus not equal to zero.
@drpeyam5 жыл бұрын
At which point?
@r75shell5 жыл бұрын
@@drpeyam let me rephrase, if f1, f2, f3.. (basis) all equal to zero everywhere except basis vectors, how could some LT be nonzero to anywhere else, like 2 times v1 - doubled basis first vector? I think it should be f1(k*v1) = k for any k, and zero everywhere else.
@drpeyam5 жыл бұрын
By everywhere else I mean zero on all the basis vectors other than v1
@r75shell5 жыл бұрын
@@drpeyam so, you want to say that f1 is some LT such that it has 0 at any basis vector except v1, and it is equal to 1 at vector v1, and f1 of any other vector have a value as it fit? Then, would be nice to say why f1 exists and is it unique and so on. So f1(k v1) = kf1(v1) = k just because it's one of properties of LT. Oh, looks like f1 is non zero in many places, not only for vectors kv1, that's why you say like that. Anyway, I was confused and now I got it.
@schlechtestergtaspielerdek3851 Жыл бұрын
This is electroboom for mathematicians or cs students XD. THx
@lynny7868 Жыл бұрын
2:30, 6:05
@rodrigodiazarancibia5486 Жыл бұрын
Thanks man!
@AkshayKumar-pt6fz5 жыл бұрын
This is so good!! 👍👍
@snehadwivedi58944 жыл бұрын
Much needed
@bhargav74784 жыл бұрын
so dual space of vector space V is basically adam world of origin world a.k.a. vector space V.