EEVblog

  Рет қаралды 111,560

EEVblog

EEVblog

Күн бұрын

Пікірлер: 126
@apino01
@apino01 3 жыл бұрын
I'm taking Advanced Analog Electronic Circuit Design at Johns Hopkins for a Master's and this video was EXACTLY what I needed to help me with my assignment. You're always so thorough and helpful, Dave. I really appreciate all of your videos and love that this video was on the money for me.
@BelperFlyer
@BelperFlyer 10 жыл бұрын
I'm old enough to remember when 702 op amps cost a week's wages and suffered from 'purple plague' corrosion failure. Been retired a while but you videos stir up my old brain cells a treat. For the odd gain requirements the hardest thing is getting the right resistor values without resorting to pre-sat pots. Clear, concise and not too theoretical. For me no longer any practical use but it's good to know I haven't forgotten everything :)
@emcgon
@emcgon 10 жыл бұрын
I have missed Fundamentals Friday...its my favourite of the things that you do. This one was great...thanks.
@PsiQ
@PsiQ 6 ай бұрын
You wont believe how much i currently learn from your videos :-) Thanks for doing these !!
@omegacsblog
@omegacsblog 10 жыл бұрын
You mentioned the challenge of getting an E96 resistor set to handle the 3-stage form. I'm very analog-challenged, but if I'm reading things right you want a gain of 4.6414, so a resistor ratio of 3.6414. I have a Python script I wrote a while ago that trial-and-error's all the available resistor values, and it gets 1300 / 357, which is 0.0085% off across all 3 stages. 4-stage isn't as close, 1370 / 634 gives 0.176% off 100x. An interesting question would be what happens statistically with the tolerances of the 6+ resistors. I calculate worst-case with all resistors pegged the wrong direction for a 3-stage setup using 1% resistors at 6.15%, but what happens when you take the tolerance *binning* (bell curve) and run the math?
@susceptibility_
@susceptibility_ 2 жыл бұрын
If you connect resistors series with the same tolerance, the resulting resistor will have the same tolerance as the individual ones. For example, 10 x 1kOhm 1% resistor in series makes an 10 kOhm 1% resistor. If each 1kOhm were in worst case 1.01 kOhm (1% error), then the sum of them would be 10.1 kOhm, which is still 1%.
@gamccoy
@gamccoy 10 жыл бұрын
Great topic, Dave. I love these fundamental tutorials.
@raguaviva
@raguaviva 10 жыл бұрын
Excellent video! Time to revisit an old project that didn't work just because I killed its gain by using a huge gain :) Thanks, and keep posting videos like this one!
@RobertSzasz
@RobertSzasz 10 жыл бұрын
"All things being equal" always makes me think of spherical cows. Thanks for the great video.
@eddyfontaineyoutu100
@eddyfontaineyoutu100 10 жыл бұрын
Analog electronics, that the real thing !!!
@tubical71
@tubical71 10 жыл бұрын
Nice to be back in class, 1st row as usual;) Thanx Prof. D. Jones, great lesson!
@scowell
@scowell 10 жыл бұрын
With a 2-stage setup, using inverting config allows easier resistor choices. Same for all even-numbered stage configs. Using even numbered stages as well as inverting config allows negative gain as well.
@volodymyrzakolodyazhny
@volodymyrzakolodyazhny 5 жыл бұрын
Inverting config is easier only for second stage (third, etc). It isn't easy to implement inverting config in first stage, because of unsertain impedanse of previous part.
@Kezat
@Kezat 10 жыл бұрын
Love it Dave, great white board theory to practical demonstration transition, really tied it together.
@magzire
@magzire 10 жыл бұрын
One smart guy, he knows his shizzle
@Laogeodritt
@Laogeodritt 10 жыл бұрын
Adding more stages has diminishing returns as mentioned, and at some point actually reduces the total system bandwidth (eventually an extra stage does not add enough bandwidth to compensate the next stage's additional attenuation of higher frequencies). With that in mind I figured I'd make a few pencil scratches on the back of a napkin and figure out what the optimal number of stages is (yielding maximum bandwidth): n = 1/lg(2 lg A / (2 lg A - 1)) This yields a maximum bandwidth of: GBW (2 lg A / (2 lg A - 1))^(lg A) * sqrt(2 lg A / (2 lg A - 1) - 1) Given: - lg is the logarithm of base 2 - A is the desired system gain - GBW is the gain-bandwidth of the op-amps - It is assumed that each stage has the same gain and uses the same op-amp - It is assumed that BW is perfectly linear wrt effective gain Obviously, n must be a whole number, so round up/down, whichever gives the best result. Likewise, the maximum bandwidth formula is theoretical for a potentially real-valued n. This is rarely worth the effort in practice, I was just bored and don't feel like working on my Capstone project =P As Dave mentioned in the video, there is a diminishing returns effect---so in the video's example, 9 stages might give the best bandwidth (something like 170kHz effectively), but 8 stages only gives you 500Hz less bandwidth (not even 0.5% difference!), 7 stages costs you 2kHz or so (around 1%), and so on - those last few stages aren't worth the extra design and production cost!
@tubical71
@tubical71 10 жыл бұрын
At 15:30 you may add that: -3dB is as well as 45 degree phaseshift, as we all see clearly in your beautiful waveform display! Just to mention;)
@suzesiviter6083
@suzesiviter6083 6 жыл бұрын
Very useful thanks, I dont know how I have managed to miss this bit of theory in my careers.
@jeremygrotte130
@jeremygrotte130 10 жыл бұрын
I don't even bother waiting for the video to end before giving it a big 'Thumbs Up' anymore. They've all been great.
@erikjohnson2976
@erikjohnson2976 10 жыл бұрын
Great tutorial. Thanks, Dave!
@weeeeehhhhh
@weeeeehhhhh 10 жыл бұрын
Fantastic stuff. Love fundamental fridays! Amy.chance you could add a tutorial Thursdays with more of this?
@andreasroedwehage9135
@andreasroedwehage9135 10 жыл бұрын
Brilliant video Dave.
@666Pulsar666
@666Pulsar666 10 жыл бұрын
Glad to see you upgraded Dave CAD to gold version :D
@RexxSchneider
@RexxSchneider 2 жыл бұрын
The only thing missing is the point that as we deal with larger signals, the slew rate can become the limiting factor, not the GBWP. For the TS912, with a supply voltage of 10V you can expect a slew rate as little as 0.8 V/μs, so for example, a 2Vrms (i.e. 5.6Vp-p) output will be limited to rather less than 100KHz, regardless of gain.
@frankreiserm.s.8039
@frankreiserm.s.8039 5 жыл бұрын
You are easier to understand than my other EE teachers. Frank Frank Reiser Video/Audio Service
@AttilaAsztalos
@AttilaAsztalos 10 жыл бұрын
Quite instructive and fun to watch - the minor quibble I have is that there's some mental gymnastics left unexplained: seasoned pros might not even understand what the difficulty is but it can really bog down someone trying to wrap their head around the math for the first time that the GBWP mentioned is not the frequency where you still _get_ your nominal unity gain (as some like me may have assumed) but the point at which you have _lost_ 3db of it (the source of the 0.7 figure). Yes, I know (now...) that that _is_ the definition of bandwidth, but the finer point that your theoretical "1MHz" setup is not expected at all to really do x10 at 100KHz but an actual x7 instead is not a straightforward one at all for someone just trying to follow the experiment...
@Guatis2112
@Guatis2112 6 жыл бұрын
Attila Asztalos t
@herr_kukuffs
@herr_kukuffs 10 жыл бұрын
Nice, Dave! Thank you! I think cascading OpApms could be really useful!
@redtails
@redtails 10 жыл бұрын
3:07 well this is a good reason to use stereo or quad opamps, right?
@t3du
@t3du 10 жыл бұрын
OK, Dave but which opamp will be the right one for this? the classic lm 741, tl 8082, or any with single power supply or dual? Its about choose the right one :\
@EEVblog
@EEVblog 10 жыл бұрын
The right one for "what"? There is no application requirement here, it is simply showing that it's possible to do this.
@MINUX75
@MINUX75 2 жыл бұрын
With ONE LM311 or any comparator and apply X100 directly, it's works very well and you have the bandwidth. No need to cascading Opamps. Bold cowboys do that.
@vencibushy
@vencibushy 10 жыл бұрын
Dave, without realizing, you actually managed to link an economics law to electronics. That is the law of diminishing returns which states that in all productive processes, adding more of one factor of production, while holding all others constant, will at some point yield lower per-unit returns. How brilliant is that :)
@Desmaad
@Desmaad 10 жыл бұрын
It's a fairly common term in engineering, if I understand correctly.
@redtails
@redtails 10 жыл бұрын
Nice video! Very easily explained, even to non-ee people
@sc0rpi0n0
@sc0rpi0n0 10 жыл бұрын
Thanks Dave! Just in time I need this.
@HA7DN
@HA7DN 5 жыл бұрын
Dangit, I tought instantly about gain-bandwith product. I feel sooooo smart now!
@GadgetUK164
@GadgetUK164 10 жыл бұрын
Excellent stuff!
@georgevendras5450
@georgevendras5450 4 жыл бұрын
Very funny that @ 4:28 the zero in the denominator of the first ration (1 STAGE = 1MHz/100) moves a little bit to the right.
@DavidLeeMenefee
@DavidLeeMenefee 10 жыл бұрын
I like Op amps. Thumbs up Thanks
@ernststavroblofeld1961
@ernststavroblofeld1961 9 жыл бұрын
ElectronicWizzard Electronics is like Lego for teenagers.
@CNKayutube
@CNKayutube 10 жыл бұрын
half a "bees dick" now that is funny i don't care who you are. lol You have some funny lingo down under. : )
@christophers6034
@christophers6034 10 жыл бұрын
(.5 bee's dick) = .05mV ?
@xDR1TeK
@xDR1TeK 10 жыл бұрын
Sex on a stick!!!
@CNKayutube
@CNKayutube 10 жыл бұрын
or OHHHHH burrbrown "it's almost pornographic"
@rileystewart9165
@rileystewart9165 4 жыл бұрын
Not only did I learn how to do cascading op amp problems but I learned who Bobby Dazzler was LOL
@ronaldlijs
@ronaldlijs 10 жыл бұрын
Good fundamental video, cheers!
@elboa8
@elboa8 10 жыл бұрын
Nice. Very clear. Keep them coming. Cheers.
@redtails
@redtails 10 жыл бұрын
1:20 huh, thank you so much already, I always wondered about this
@cronos51101
@cronos51101 10 жыл бұрын
Half a bee's dick, lol, I've never heard that one. OP amps are crazy man...
@Electrotech1980
@Electrotech1980 Жыл бұрын
Hi Dave, Thanks for the video. Can you please make a video on OP Amp compensation and why you can't cascade them in a single feedback loop? I did do that more than 40 years ago for a corrosion cell controller once. Not for bandwidth but for gain. I used a compensated amp and an uncompensated amp within the feedback loop to keep it from oscillating. Luc Boulard
@reox42
@reox42 10 жыл бұрын
why do you write 2^(1/N)? You don't need the ^ symbol there ;) i always read that as "2 to the power of n times 1/N)" and wondered about the "n" :)
@gregfeneis609
@gregfeneis609 6 жыл бұрын
Perhaps nuth n to worry about
@foxyrollouts
@foxyrollouts 6 жыл бұрын
he must be used to using the keyboard, or hes trying to idiot proof it
@TheDejfson
@TheDejfson 10 жыл бұрын
What about the input offset when cascading.It was said that you have chosen this particular opamp because of the offset characteristics. Now if you cascade amplifiers, in worst case the offset maximum (peak, hence say 3 sigma) value could theoretically multiply by factor of four, which could result in an offset value exceeding an offset of another amplifier having probably larger bandwidth.right?
@EEVblog
@EEVblog 10 жыл бұрын
It ain't that easy, it depends on the opamp topology and how the offsets are spread statistically (can be pos and neg). They could very well cancel out for example.
@FireDragonAndromeda
@FireDragonAndromeda 10 жыл бұрын
Informative as always.
@Momonga-s7o
@Momonga-s7o 10 жыл бұрын
Awesome channel, THANK YOU!
@vsr600
@vsr600 10 жыл бұрын
why didn't you use the HP spectrum analyzer for this? Seems like it would have been way more straight forward to get the frequency response....
@GaziSharif
@GaziSharif 9 ай бұрын
Could some one please tell me the gain value is the feedback resistor value? Should I split the feedback resistor value in the case of cascaded op amps? For example, if I use 10 K ohm feedback resistor for one op amp, in case of two cascaded op amps are these 100 ohm each?
@alijafary5559
@alijafary5559 4 жыл бұрын
is it ok to cascade multiple mfb band pass filter to achieve more bandwidth?
@uccoskun
@uccoskun 3 жыл бұрын
dear Dave: What are the small "n" and the big "N" in your formula?
@vigsgb
@vigsgb 10 жыл бұрын
Why increase the bandwidth? Will it give quicker reaponse times on the measurement or increase what can be measured?
@douggale5962
@douggale5962 2 жыл бұрын
I love how the bandwidth formula gives 0 for N=0, if you ignore the destruction of the universe in the exponent. The universe wouldn't have exploded if it used negative exponent notation.
@BrentBlueAllen
@BrentBlueAllen 10 жыл бұрын
"Half a bees dick"!? Even more-so than the EE knowledge you've shared, I appreciate the Australian slang.
@tonnyodekerken9013
@tonnyodekerken9013 3 жыл бұрын
Oh 2014. Do you still read the reactions? Can you explain when you (not ‘you’ but in general) use V_dB versus P_dB. Clarify: you say in the beginning GBPB=-3dB bandwidth. You point at an opamp that has infinite input impedance and nothing is connected to the output. Should it then be 6dB? No power gain. I know the ‘3dB’ is carved in our brains. But theoretically?
@Nordic_Mechanic
@Nordic_Mechanic 10 жыл бұрын
When did you upgrade your daveCAD license to gold?
@obiwanjacobi
@obiwanjacobi 10 жыл бұрын
Excellent! Thanx!
@00Skyfox
@00Skyfox 8 жыл бұрын
I'm still confused. What exactly is meant by "bandwidth" in terms of opamps?
@NinjaAdorable
@NinjaAdorable 8 жыл бұрын
+00Skyfox The frequenzy over which the opamp will provide use-able gain. ie upto -3dB gain can be tolerated. So the frequency range which goes from 0dB to -3dB will make up the op-amp's BW.
@antonioferraoneto6681
@antonioferraoneto6681 8 жыл бұрын
Hi Dave, do you have some reference book about this subject?
@coder1016
@coder1016 5 жыл бұрын
Thanks man!
@yaghiyahbrenner8902
@yaghiyahbrenner8902 10 жыл бұрын
good video. why didn't you frequency compensate your stages, this could have improved the design better ?
@EEVblog
@EEVblog 10 жыл бұрын
This isn't a "design", it's a quick check to show that the bandwidth does increase in line with the theory.
@yaghiyahbrenner8902
@yaghiyahbrenner8902 10 жыл бұрын
:) yeah I feel you. would be good to start looking at this some time in the future as part of the op-amp series really great set of videos. I see you updated to the Dave Cad "Gold Edition" I was told its only limited to 30 nodes. :D
@gabriellgardin
@gabriellgardin 5 жыл бұрын
THANK YOU !!!!
@electronic971
@electronic971 7 жыл бұрын
great video and explication !! merci pour toute c'est vidéo :) But i have question : what if my different stage(OPs amplifier ) haven't the same GAIN.....
@eiler89
@eiler89 10 жыл бұрын
Hi Dave! I love these practical design theory videos =) But one question, how do you know that the OpAmps both come from the same die?
@EEVblog
@EEVblog 10 жыл бұрын
Because there is only one die inside the chip containing both opamps.
@eiler89
@eiler89 10 жыл бұрын
EEVblog Ah, of course! I thought I saw two chips there :p
@PhN1800
@PhN1800 10 жыл бұрын
Great video! :)
@ManofCulture
@ManofCulture 10 жыл бұрын
SO can i use series of OP amps to increase my internet bandwidth :D
@andrefbos
@andrefbos 10 жыл бұрын
Isn't noise a high frequency signal? If so, doesn't it get attenuated by the limited bandwidth of the op amp?
@peterpv0001
@peterpv0001 10 жыл бұрын
Nope, but it depends on the type of noise. 1/f noise for example has more power at lower frequencies. Thermal noise is flat over frequency. But you're right that high frequency noise is attenuated by the bandwidth of the system but so is your input signal so you gain nothing.
@williamhazelwood8288
@williamhazelwood8288 8 жыл бұрын
Uncompensated Op amps are all i have.. made me cry :(
@redtails
@redtails 10 жыл бұрын
7:24 well.. I don't see much point going above 3 stages.. Unless you're looking at gains of tens of thousands to millions, it's not going to do much
@DrEnginerd1
@DrEnginerd1 10 жыл бұрын
Do butterworth next
@yevhenzabila320
@yevhenzabila320 6 жыл бұрын
Thanks for this video, it's very helpful for the beginners like me. I built my amplifier based on two Non-Inverting OPA694, about 2 x 20dB=40dB voltage gain. I need both DC and AC amplification, i.e. full bandwidth from DC to 100MHz is required. Is anybody suggest how to modify cascade in order to get rid of an offset?
@joblessalex
@joblessalex 10 жыл бұрын
Nice! Would it be cheaper to just buy an op amp with 10-20 mhz gbwp?
@EEVblog
@EEVblog 10 жыл бұрын
I explained that. There are situations when you are forced to use this technique. You can't just buy a better opamp.
@joblessalex
@joblessalex 10 жыл бұрын
EEVblog Once again jumped the gun and posted before I got there.
@ratbag359
@ratbag359 10 жыл бұрын
very helpful knowledge :)
@frankm.9356
@frankm.9356 10 жыл бұрын
Dave, at 04:10, you define "BW" as the bandwidth of a single stage. Using this definition, the formula probably should be BW_TOT = BW^N * Sqrt[2^(1/N)-1] i.e. "BW^N" instead of "BW". I found another formula here: demonstrations.wolfram.com/SystemBandwidthForCascadedAmplifiers/ (The formula is: Sqrt[BW^2/N], which results in 70.7kHz for two stages of 100kHz). Now I am wondering which is of two formulas is correct.
@frankm.9356
@frankm.9356 10 жыл бұрын
Sorry, I was wrong with "BW^N"; "BW" is correct.
@27merk
@27merk 10 жыл бұрын
Dave, if you have time just a 2 min supplementary vid on the differences between cascading two (or 3) different BWP & Gain amps. Just curious that's all. ps stop castrating those bees!
@IanGrall
@IanGrall 10 жыл бұрын
And right when I thought I was going to bed..
@dankennedy2491
@dankennedy2491 10 жыл бұрын
So in theory running your op amps at higher voltages can increase your GBWP?
@peterpv0001
@peterpv0001 10 жыл бұрын
Depending on the opAmp, yes. Not all opamps have a GBWP that is dependant on the supply voltage. And in practice you're of course limited by the maximum supply voltage that the opAmp can handle.
@EEVblog
@EEVblog 10 жыл бұрын
No, not all opamp are like that. You also have slew rate limitations at high output voltages. Your GBWP may not hold at full output swing. I guess I forgot to mention that...
@yoghurtwow
@yoghurtwow 10 жыл бұрын
lovely , really.
@pocoapoco2
@pocoapoco2 7 жыл бұрын
actually 12k and 3.3k will get you spot on to 4.6416 if you choose a 12k that's a tiny bit high and a 3.3k that's a tiny bit low.
@stargazer7644
@stargazer7644 5 ай бұрын
What part number do I use on digikey for "12k that's a tiny bit high"?
@pocoapoco2
@pocoapoco2 5 ай бұрын
@@stargazer7644 kzbin.info/www/bejne/Z4ikmYeajKqlqLc
@alperenalperen2458
@alperenalperen2458 9 жыл бұрын
I am curious about the calculation of bandwidth in such case. Could someone give me a refrence?
@alperenalperen2458
@alperenalperen2458 9 жыл бұрын
shomolya could you try this one plus.google.com/u/0/107666507827268479667/posts/Mv1C1DJSWQE?pid=6204062777226647122&oid=107666507827268479667
@alperenalperen2458
@alperenalperen2458 9 жыл бұрын
+shomolya I liked your way to appraoch the problem. what you do is basically(correct me if I'm wrong) you obtain the transfer function of the filter in terms of power(not voltage) and set it to 0.5 right? Btw we should really be having this conversation in the EEVBlog forum. :D
@antonioferraoneto6681
@antonioferraoneto6681 3 жыл бұрын
Does anyone know any reference on this subject?
@mitchellscales8846
@mitchellscales8846 10 жыл бұрын
didnt know adafruit is selling your uCurrent
@edocodIT
@edocodIT 10 жыл бұрын
"The chip isn't cheap" "The chip isn't cheap" "The chip isn't cheap" "The chip isn't cheap" Is it just me, or this sentence sounds funny? :P
@MarcinKurczalski
@MarcinKurczalski 10 жыл бұрын
DaveCAD upgraded to GOLD? xD
@Etude888
@Etude888 8 жыл бұрын
One could download the free TI TINA Simulator to verify the principles here.
@Alex-cj7ro
@Alex-cj7ro 5 жыл бұрын
same is on ur t shirt
@lakshminarayanaaithal1081
@lakshminarayanaaithal1081 5 жыл бұрын
I guess the distortion is due to the low skew rate of TS912.
@VoyuerHole
@VoyuerHole 10 жыл бұрын
lol. Half a bee's dick...I don't remember that being in the SI system! : )
@maksym2k
@maksym2k 10 жыл бұрын
You're way too young to know all of this. Admit you know how to time travel.
@AnatoFIN
@AnatoFIN 10 жыл бұрын
Maybe speek bit slower and make video longer pls
@darer13
@darer13 4 жыл бұрын
no
@weeeeehhhhh
@weeeeehhhhh 10 жыл бұрын
Fantastic stuff. Love fundamental fridays! Amy.chance you could add a tutorial Thursdays with more of this?
EEVblog #1318 - What's State-of-the-Art in µCurrent Opamps?
53:08
EEVblog #49 - Decibels (dB's) for Engineers - A Tutorial
20:48
World‘s Strongest Man VS Apple
01:00
Browney
Рет қаралды 63 МЛН
إخفاء الطعام سرًا تحت الطاولة للتناول لاحقًا 😏🍽️
00:28
حرف إبداعية للمنزل في 5 دقائق
Рет қаралды 80 МЛН
Крутой фокус + секрет! #shorts
00:10
Роман Magic
Рет қаралды 41 МЛН
EEVblog #490 - Peak Detector Circuit
35:03
EEVblog
Рет қаралды 236 М.
EEVblog 1609 - Composite Amplifier Tutorial + Practical Demo
23:08
EEVblog #479 - Opamp Input Bias Current
34:14
EEVblog
Рет қаралды 206 М.
EEVblog #748 - How Do Transistors Work?
23:15
EEVblog
Рет қаралды 293 М.
The NIXIE Tube, and How To Use Them
20:08
Mr Carlson's Lab
Рет қаралды 125 М.
EEVblog #908 - Zener Diodes
32:34
EEVblog
Рет қаралды 476 М.
Op-Amps  - Using Operational Amplifiers
44:21
DroneBot Workshop
Рет қаралды 290 М.
EEVblog #594 - How To Measure Power Supply Ripple & Noise
37:44
EEVBlog #1116 - How to Remove Power Supply Ripple
27:05
EEVblog
Рет қаралды 576 М.