EKF-SLAM (Cyrill Stachniss)

  Рет қаралды 22,423

Cyrill Stachniss

Cyrill Stachniss

Күн бұрын

Пікірлер: 19
@uchennahenry5019
@uchennahenry5019 2 жыл бұрын
Wow...I am watching this just before my exam in mobile robotics and I can tell you this is the best explanation I have seen in my life.....Good job
@CyrillStachniss
@CyrillStachniss 2 жыл бұрын
Thanks
@t7732155980
@t7732155980 3 жыл бұрын
Thank you.
@toannn99
@toannn99 4 жыл бұрын
Amazing !!!!! Thank you so much for great videos !!
@马玉宁-b6v
@马玉宁-b6v 2 жыл бұрын
thanks, this give very details on the directions for implementing a ekf state estimator.
@王继宸
@王继宸 2 жыл бұрын
thank you so much. Your lecture really help me a lot!!!!!
@johannstrydom9001
@johannstrydom9001 Жыл бұрын
How would I make the F matrix for high dimensional space at 43:54 given the case for j=0?
@h.mehmetavci2932
@h.mehmetavci2932 4 жыл бұрын
good presentation
@MrVaginalpilz
@MrVaginalpilz 3 жыл бұрын
Why do we not transform the motion noise R by multiplying it from both sides with the jacobian of the motion model wrt the controls? We transfomormed the covariance using the jacobian of the motion model wrt the robots pose, should the same logic apply to the motion noise?
@jadtawil6143
@jadtawil6143 3 жыл бұрын
The part about the EKF Slam limit i found confusing. Why does the covariance of the estimate of the robot pose not decrease below its initial value? Isn't the observation of landmarks supposed to aid in determining where the robot is.
@CyrillStachniss
@CyrillStachniss 2 жыл бұрын
In Slam you map the landmarks as well, thus you can never go below the initial uncertainty (unless you have a global sensor such as gnss)
@nicolasperez4292
@nicolasperez4292 3 жыл бұрын
Hi Cyrill, I noticed in some of your videos you gloss over details, I personally mind them being explained more deeply. For example, at 41:30 you say 'this is basically a squared function'. It is not clear to me how you got the derivative for this function.
@glebsvirskiy9536
@glebsvirskiy9536 3 жыл бұрын
If you correctly calculate q you will get that it equals q_x**2 + q_y**2.
@CyrillStachniss
@CyrillStachniss 3 жыл бұрын
q = d^T d which exactly leads you there...
@Infaviored
@Infaviored 3 жыл бұрын
I don't understnad the special effect of loop closure events mathematically. Why does a loop closure reduce the SIgma? *LOOP CLOSURE* in EKF_CORRECTION for loop closure, line 9 is false. Landmark has already been seen. delta(line 12) will be computed from *estimated* robot pose and *estimated* landmark position. It will not be particularly big. line 14: *^z_i* , the *estimated z* for point i will be VASTLY different from *z_i* (*measured z* for point I) This is the special thing about loop closure. This leads to a big update for the *mu* in line 18. But why does it affect the covariance Sigma_t? Big differences between ^z_i and z_i somehow have to affect Sigma in a reducing way. Either due to a big H_i, or a big kalman gain (caused by H_i as well) But the differences between ^z_i and z_i are not reflected in the H_i. So what is the special thing about loop closure events for the covariance Matrix Sigma then?
@yiminghu267
@yiminghu267 4 жыл бұрын
You are thinner than seven years ago and fit :)!
@AmitKumar-fg9qr
@AmitKumar-fg9qr 4 жыл бұрын
this was my final year project
@shreyans9330
@shreyans9330 4 жыл бұрын
sad life
@purpledragon6604
@purpledragon6604 4 жыл бұрын
Awesome !!!! That is such an amazing feat !!!!! We are working on a project based on SLAM too Could you guide us ???
Kalman Filter & EKF (Cyrill Stachniss)
1:13:36
Cyrill Stachniss
Рет қаралды 83 М.
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН
How Strong Is Tape?
00:24
Stokes Twins
Рет қаралды 96 МЛН
BAYGUYSTAN | 1 СЕРИЯ | bayGUYS
36:55
bayGUYS
Рет қаралды 1,9 МЛН
Introduction to SLAM (Cyrill Stachniss)
37:06
Cyrill Stachniss
Рет қаралды 38 М.
Coding EKF SLAM in Python from scratch
1:53:21
Jacob Higgins
Рет қаралды 2,7 М.
Terence Tao at IMO 2024: AI and Mathematics
57:24
AIMO Prize
Рет қаралды 654 М.
Why Does Diffusion Work Better than Auto-Regression?
20:18
Algorithmic Simplicity
Рет қаралды 398 М.
Particle Filter and Monte Carlo Localization (Cyrill Stachniss)
1:05:34
Cyrill Stachniss
Рет қаралды 31 М.
SLAM Course - 05 -  EKF SLAM (2013/14; Cyrill Stachniss)
1:24:36
Cyrill Stachniss
Рет қаралды 75 М.
Bayes Filter  (Cyrill Stachniss)
32:06
Cyrill Stachniss
Рет қаралды 30 М.