This integral required a "green pen substitution" to be completed.
@rchishray78146 жыл бұрын
teavea10 And a brown note
@blackpenredpen6 жыл бұрын
YUP!
@moosemanuk6 жыл бұрын
The mind boggles. Thing is, the reason why I love your videos mate, is that I can follow each step easily (I have some university mathematics to rely on) ... but it's just the creativity of coming up with the next step that impresses me all the time! I would take one of those steps and while understanding it, would not even think of it in the first place. Really good stuff my friend, inspiring to an old bloke like me!
@tomatrix75254 жыл бұрын
Stefan McNamara same thing here. I understand everything but always question how he thinks of doing in....
@AlexisGarciator2 жыл бұрын
@@tomatrix7525 same here. I’m learning this stuff and understand it but sometimes question how to go about solving problems
@antimatter23766 жыл бұрын
Keepin' it ʳₑᵃₗ
@Theraot6 жыл бұрын
14:00 I've been wondering how often that happens. Usually markers are alcohol based, and alcohol is volatile, and the two color switch technique requires to keep the markers uncapped. I read there are water based erasable markers, perhaps those last longer, I haven't tried.
@ianmoseley99106 жыл бұрын
Alfonso J. Ramos Electronic whiteboard would do the job
@not_vinkami6 жыл бұрын
14:03 this is the most important part of the whole video 😂 laugh die me
@blackpenredpen6 жыл бұрын
LOLLL Glad that you like it and I didn't cut that part off : )
@p.singson39106 жыл бұрын
Integration for breakfast is awesome
@blue_blue-16 жыл бұрын
Thought the same, but I don‘t make it to the happy end today. ☹️ Made it to the end now. Quite irrational, but fantastic handling. Kudos!
@vehaanhanda19963 жыл бұрын
11:38 You could also have used the formula (integral)dx/(x^2-a^2) = (1/2a)ln|(x-a)/(x+a)| + C That's a much quicker method, but the good part about your method is that....I finally got to know the derivatives for inverse hyperbolic tangent and cotangent :)
@prollysine2 жыл бұрын
Dear bprp! I admire your soaring interest, I think you are standing alone in this round world! Thank you!
@gregoriousmaths2664 жыл бұрын
That first step was genius! I was only able to do it after u did that
@mariokraus69655 жыл бұрын
Physical pleasure in seeing such difficult integrals solved
@danieljose41766 жыл бұрын
Awesome job man I really appreciate this channel and all the extra credit math I can do outside of school
@seegeeaye2 жыл бұрын
it could be done in a short way. The integral = 1/2 integral of (1-x^2)/(x^4 +1) + (1+ x^2)/(x^4 + 1), the first integral could end up with a log function after letting t = 1/x + x, and the second integral could end up with an arctan function after letting t = 1/x - x, then consider the integral limits,
@rishavgupta21176 жыл бұрын
Can you plz start weekly integral challenges
@holyshit9224 жыл бұрын
If we want to calculate numerically it is good idea to use change of variable u=1/x then we will get Int(u^2/(1+u^4),u=0..1) Answer is close to one quarter If we need to have initial guess one quarter is good option
@admink86626 жыл бұрын
Inverse ^-1 Hyperbolic h^-1 Cotangent coth^-1
@i_am_anxious026 жыл бұрын
This is like a weirder best friend, who wants part of him to have a fourth power and part not, part negative of the original and part not, and his x wants to go from infinity to 1 instead of being trapped from -1 to 1. This best friend wants to explore his limits and see if he can go to infinity lmao
@imanolmanzanares50006 жыл бұрын
Nice video bro!! I am learning a lot with yours videos, thanks!
@talharizvi63435 жыл бұрын
U can replace integral of (1/u^2 - a^2) dx with 1/2a log | u -a / u+a| instead of using hyperbolic cotangent
@Drk9503 жыл бұрын
It's the same :)
@Gold1618036 жыл бұрын
The "so good" is back! YAY!!
@KelfranGt6 жыл бұрын
How do I know when to use arctan(x) or arccot(x) for indefinite integrals?
@blackpenredpen6 жыл бұрын
Kelfran Gt You can always use arctan(x) since its domain is all real numbers
@KelfranGt6 жыл бұрын
blackpenredpen Oops! Sorry, I meant arctanh(x) or arccoth(x)
@blackpenredpen6 жыл бұрын
@@KelfranGt Oh no worries. If -1
@TheDanc000l6 жыл бұрын
@@blackpenredpen what if something like from 0 to 5 or something like that ?
@WhattheHectogon6 жыл бұрын
@@TheDanc000l then right the integral as a sum of two integrals, with the bounds that you'd like
@whilewecan7 ай бұрын
Thank you. I enjoyed your technique. With complex integral, it should be more mechanical to get the result.
@joecamroberon93226 жыл бұрын
You are a mathematics professor that wears supreme? You are a paragon of professors.
@shlokjani95014 жыл бұрын
Watching normally his videos(with blue and black pen) but you see blue pen entering(something serious is going to happen ) and at last green pen enters 🤯🤯🤯🤯🤯🤯🤯🤯🤯🤯🤯🤯🤯🤯
@paulraj75736 жыл бұрын
briliant
@tomatrix75254 жыл бұрын
I may be wrong, but did he make a small error at 13:30 . 1/1-x^2 is not actually (1/w^2+1)-1 . So he could nit change thr sign of the 1/2 outside the integral to positive.
@quantumcity66796 жыл бұрын
Awesome video....😘👌 But I have another question about differential equation... That 🤔In 1715,20 may ,Leibniz revealed the solution of the differential equation x^2.y"=2y and I don't know how to find the solution of this differential equations can you please make videos on it ...🙋
@Demki6 жыл бұрын
here's a deceivingly simple integral, you could go down the rabbit hole of trig identities, or you could do it the "easy way": integral of (7sin(x)+9cos(x))/(4cos(x)+5sin(x)) dx The easy way would be to say "wouldn't it be nice" and express 7sin(x)+9cos(x) as A(4cos(x)+5sin(x))+B(4cos(x)-5sin(x)) for some constants A and B: 7sin(x)+9cos(x) = A(4cos(x)+5sin(x))+B(4cos(x)-5sin(x)) 7sin(x)+9cos(x) = (5A-5B)sin(x)+(4A+4B)cos(x) 7=5A-5B 9=4A+4B solving the linear system of equations with gives A=73/40 B=17/40 Then the integral becomes integral of [(73/40)(4cos(x)+5sin(x))/(4cos(x)+5sin(x))+(17/40)(4cos(x)-5sin(x))/(4cos(x)+5sin(x))] dx = integral of [(73/40) + (17/40)(4cos(x)-5sin(x))/(4cos(x)+5sin(x))] dx which can be solved by simple u-substitution.
Oh I missed that video blackpenredpen :P I happened to come across a similar problem recently and thought of this channel.
@blackpenredpen6 жыл бұрын
Demki ah I see. That's a really fun integral.
@deathmetal40293 жыл бұрын
To them who find this problem difficult , you might get disappointed but this problem is fuckin easy, its just 4-5 min problem. Well that my opinion. -Jee aspirant,Indian.
@raytheboss46502 жыл бұрын
You can take lcm in denominator
@goodplacetostart90996 жыл бұрын
So I learnt that (a-b)^2=(b-a)^2 When I tried the problem on my own😂
@patrickgleason30536 жыл бұрын
You just blew my mind 🤯
@blackpenredpen6 жыл бұрын
: )))))
@osuNoobCast6 жыл бұрын
14:01 God doesn't want it to be a plus 😜
@ackheeleangus15925 жыл бұрын
The math was great but is no one gonna give him props for the supreme windbreaker 😂
@flamingpaper77516 жыл бұрын
What about the same function from negative infinity to positive infinity
@benjaminbrady23856 жыл бұрын
How do we know what infinity in the trigonometric functions are?
@pent_m85894 жыл бұрын
I think you can also use the secant substitution
@punkrockrules2056 жыл бұрын
great techinique
@Jacob-uy8ox6 жыл бұрын
Best video of 2018
@blackpenredpen6 жыл бұрын
Thanks!
@abstruse1232 жыл бұрын
Excellent explanation
@maxblanc19343 жыл бұрын
Can we just put x² = u and just calculate the primitive of 1/1+u². Then we can write the primitive of this function as a limit [arctan(u) ] between 1 and infinite. Because the function is continue on I=[1,inf] And the function 1/1+u², in +Inf, is equivalent to a Riemann function with t^-2 which converge α=2 >1. So, by comparison theorem 1/1+u² CV. We can write the integral is equal to the Primitive's limit in +Inf minus the value of the primitive in 1. u = x² does not change the result: π/2 - π/4 = π/4
@lawliet22633 жыл бұрын
Oh my god what a pro dude
@dillonlobban19226 жыл бұрын
Beautifully done
@dannyvillegas91042 жыл бұрын
You can also use integration by parts
@omar.ma72 жыл бұрын
An error in 6th line :in denominator we have: u^2+2=2(u^2/2 +1)=2((u/sqrt(2))^2+1) Not sqrt2(u^2/sqrt2 +1)
@Drk9503 жыл бұрын
Question: Would be Feynman technique useful in this problem?
@kizki23513 жыл бұрын
Hey can you please link me to one of your videos explaining the 11:02 step / or someone can please explain to me ? I don't understand this step with tan-1. Thank you
@efegokselkisioglu8218 Жыл бұрын
Yeah, me neither
@_DD_154 жыл бұрын
Why not complexifying the integral? 1/[(1+(ix)^2)(1-(ix)^2)] then partial fractions and good game. 😊
@JoshuaHillerup6 жыл бұрын
Are there integrals that you can do with us that just won't work in Wolfram Alpha?
@M.Neukamm3 жыл бұрын
That's the funkiest integration exercise I ever saw. My mind is boiling.
@pdjibril Жыл бұрын
😂
@manishkumarsingh30826 жыл бұрын
Solve it x+√x(x+1). +√x(x+2). +√(x+1)(x+2). =2 for positive value of x
@megauser85124 жыл бұрын
Assuming that each of the 2nd through 4th terms are entirely under their square roots, the solution is as follows: Given x + √x(x+1) + √x(x+2) + √(x+1)(x+2) = 2, x > 0 , then x + √(x^2+x) + √(x^2+2x) + √(x^2+3x+2) = 2, x > 0. Plugging in x = 0 we get: 0 + √(0^2+0) + √(0^2+2*0) + √(0^2+3*0+2) = √(0+0) + √(0+0) + √(0+0+2) = √0 + √0 + √2 = 0 + 0 + √2 = √2, which is < 2. Plugging in x = 1 we get: 1 + √(1^2+1) + √(1^2+2*1) + √(1^2+3*1+2) = 1 + √(1+1) + √(1+2) + √(1+3+2) = 1 + √2 + √3 + √6, which is > 2. Notice that all 4 terms always increase with x when x is > 0. Therefore, the solution must be x = some number between 0 and 1. Going further, x + √x(x+1) + √x(x+2) + √(x+1)(x+2) = 2 turns into √x * [√x + √(x+1)] + [√x + √(x+1)] * √(x+2) = 2 [√x + √(x+1)] * [√x + √(x+2)] = 2, and that's all I got. However, Wolfram Alpha says that the answer is 1/24. (1/√24 + 5/√24) * (1/√24 + 7/√24) = (6/√24) * (8/√24) = 48/24 = 2.
@dark_knight23416 жыл бұрын
Hey , why don't you solve this integral using a trig sub : we put x = sqrt( tan(u) )
@absolutezero98745 жыл бұрын
Hmm just leave the inverse cosh of square root of 2?
@absolutezero98745 жыл бұрын
It’s equal to ln(square root of 2 + 1)
@VSP45914 жыл бұрын
Why not to split x4+1 = (x2+i)(x2-i) and split in 2 simple fractions and continue to integrate 2 fractions of second degree 1/(x2+i) and 1/(x2-i).
@__________________________67444 жыл бұрын
do u have all supreme clothes?
@johnpaulbdeluna4 жыл бұрын
can I answer this using arctan?
@ianmoseley99106 жыл бұрын
Any mileage in x^2+1 times x^2-1 = x^4-1?
@djaziameziane83863 жыл бұрын
I think that the first integral in blue is 1/2 arctan(u/√2) and not 1/√2arctan(u/√2)
@ruathak11064 жыл бұрын
14:06 - "You seein' this shit?"
@nathanisbored6 жыл бұрын
if arctanh(x) and arccoth(x) have the same derivative, does that mean they are only off by a constant? is that an identity?
@blackpenredpen6 жыл бұрын
I actually have a follow up video already, see description.
@MarioFanGamer6596 жыл бұрын
The graphs of arctanh(x) and arccoth(x) don't really look similar, although they start and end at the same points so I guess you can say they togther extend the domain of the integral of 1/(1-x²) with x = ±1 being a singularity. That being said, their sister functions arctan(x) and -arccot(x) (notice the minus) *are* off by a constant (although the constants depends on the value of x because arctan(x) + arccot(x) is π/2 if x ≥ 0 and -π/2 if x < 0).
@alextaunton30993 жыл бұрын
@@MarioFanGamer659 is the singularity at just the value where re=1 or -1 and the imaginary value is 0, or for all imaginary values for real value 1 or -1?
@MarioFanGamer6593 жыл бұрын
@@alextaunton3099 As a rule, if something isn't mention, it's implied to be zero, not any value. In fact, this is quite consistent, I don't know how you came to the idea I implied _all_ imaginary numbers (i.e. a line of singularities) and not just two values with no imaginary component (i.e. two points).
@alextaunton30993 жыл бұрын
@@MarioFanGamer659 because you used the term "singularity" which usually is used in context of complex functions
@dmytro_shum6 жыл бұрын
You can also do that: coth^-1(2^0.5) = ln (2^0.5 + 1) I have made that in 1 minute
@dmytro_shum6 жыл бұрын
The most fun thing is that wolframalpha gives it in the form of: 1/2 log(1 + 1/sqrt(2)) - 1/2 log(1 - 1/sqrt(2)) =D
@zanna53336 жыл бұрын
How about sqrt of (e·sqrt of(pi · sqrt (e·sqrt (pi· sqrt ....()))?
@mike4ty46 жыл бұрын
How about now int 1/sqrt(x^4 + 1) dx from 1 to oo ?
@blackpenredpen6 жыл бұрын
We will get a sad face : (
@mike4ty46 жыл бұрын
@@blackpenredpen Why?
@blackpenredpen6 жыл бұрын
mike4ty4 We can only do approximation in that case. I don't think we can find a closed form for its anti derivative
@mike4ty46 жыл бұрын
@@blackpenredpen 1. This is a definite integral, not an antiderivative, using the same bounds as used in the video. 2. Wolfram says the value of the integral is 2 Gamma(5/4)^2/sqrt(pi) ~ 0.92704, using the gamma function, which has featured on this channel before. It would be interesting to see how that is actually obtained by hand.
@jeremyb13466 жыл бұрын
[EDIT: I thought the integral was on R⁺ LOL ,anyway, using u-sub u=1/x, we can show that the integral on R⁺ is 2 times the integral on [1, infinity) @@blackpenredpen Hi (from france btw xD) blackpenredpen and mike4ty4, for the defined integral, here’s a BEGINNING of proof, using Ramanujan’s Master theorem: en.wikipedia.org/wiki/Ramanujan%27s_master_theorem Let’s call F(x)=sqrt(1/(1+x⁴)) First notice that the mellin transform of F is nice : www.wolframalpha.com/input/?i=mellin+transform+of+1%2Fsqrt(1%2Bx%5E4) We can define (R) as : (R) : mellin transform of F = gamma(s/4)*[gamma(1/2-s/4)/(4*sqrt(pi))] and M(s)=mellin transform of F Considering s’=s/4, using u-sub u=t⁴ such that we can have a term in u^(s-1) we have : M(s’)=1/4*mellin transform of 1/sqrt(1+u) = M(s) www.wolframalpha.com/input/?i=mellin+transform+of+1%2F4*sqrt(1%2F(1%2Bx)) We want to prove the relation : (R’) : M(s’)= gamma(s’)*[gamma(1/2-s’)/(4*sqrt(pi))] And then we want to compute the value : M(s’=1/4) which will give us the answer. (R)(R’) for some values of s (convergence for the values we are interested in, can be shown with Riemann, for x==> infinity ; 1/x^alpha converges alpha >1) It turns out : sum of (-x)^k / k !*[gamma(1/2+k)/(4*sqrt(pi))] from 0 to inf= 1/sqrt(1+x) for |x|
@s.p.a.35836 жыл бұрын
I'd surrender: can u invert f(x)=2+ln(x)+x? Nothing program like geogebra can't too.
@holyshit9226 жыл бұрын
If we prefer artanh we can use artanh(1/x)
@blackpenredpen6 жыл бұрын
then.. i need another video to follow that up : )
@robydomp5 жыл бұрын
Is w = X+1/x so for X =2 w = 5/4
@vishalmishra30465 жыл бұрын
You did not finish to the end of simplification of final answer. arc cot h (x) = 1/2 ln ((x+1)/(x-1)). So, arc cot h (sqrt(2)) = 1/2 ln [(sqrt(2)+1) / (sqrt(2)-1)] = ln(sqrt(2)+1). So, final answer = [ pi/sqrt(32) + ln(sqrt(2)-1) / sqrt(8) ] = same as your answer but much simpler without "inverse cot h". Use cosh(x) + sinh(x) = exp(x) to compute inverse-cot-h.
@hjk01505 жыл бұрын
I came up with π√(2)/8 - √(2)/4*ln(√(2)+1) and it seems to be the same. Not sure since I haven't learned about hyperbolic functions yet
@matthiasheymann2 жыл бұрын
One can compute z:=coth^{-1}(√2) by writing √2=coth(z)=(e^{2z}+1)/(e^{2z}-1), multiplying both sides by e^{2z}-1, solving for e^{2z}, and then taking the log to solve for z. He should have done that instead of leaving his final result as he has, with coth{-1} still flying around.
@EduardoHerrera-fr6bd6 жыл бұрын
The integral from 1 to inf of 1/(x^4+1) dx - Hardcore Partial Fractions
@EduardoHerrera-fr6bd6 жыл бұрын
Oh, this was for the other video :(
@haidarkhalid72384 жыл бұрын
dos any body know what the name of this person i want to contact with him
@l.g.f.c73566 жыл бұрын
You can help me with this equation : x^(1/x) = i I don't know how yo use the Lambert W function un this ecuation
L.G.F.C Raise both sides to the power of x: x = i^x Then take ln of both sides: ln(x) = x ln(i) x = e^ln(x) so we can write ln(x) = e^ln(x) * ln(i) Divide both sides by -e^ln(x): -ln(x) * e^-ln(x) = -ln(i) Now we can use the W function because we have something of the form z * e^z: -ln(x) = W(-ln(i)) so x = e^-W(-ln(i)) ln(i) = i*pi/2 so x = e^-W(-i * pi/2) Hope this helped
@warrickdawes79006 жыл бұрын
0.33775542942802... I'm glad Wolfram Alpha knows!
@anupamkhatiwada77193 жыл бұрын
if i am allowed to plug in any formulas for complex numbers then i got the answer to be pi/4(3+i)
@arturrheinboldt22076 жыл бұрын
That shit the realest yo
@hunterhunter40994 жыл бұрын
thanx bro
@krishbishwanath3 жыл бұрын
Easy question 😁😁
@daniell3216 жыл бұрын
can you cover regular and singular non linear ODE pertubation theory?
@rosarioromano8550 Жыл бұрын
stai semp buon
@rohithc6816 жыл бұрын
Wow aweaome
@lucasargandona46584 жыл бұрын
pfft I learnd that in elemnatry skool./
@alexanderskladovski5 жыл бұрын
just approximate x^4+1 as x^4 at big x...
@harishpanwar67373 жыл бұрын
Hello sir Im harish panwar from delhi Plz can you solve An integral I= 1/1+sin^4x
@miguelhermida90726 жыл бұрын
Uf men, that integral
@takyc78834 жыл бұрын
AYO BPRP GOT DRIP
@rishichhetri31125 жыл бұрын
😒😒Yes Pretty fun
@jaredbeaufait59546 жыл бұрын
I feel afraid
@Pineapplecake6 жыл бұрын
Nice shirt!
@blackpenredpen6 жыл бұрын
Thank you!!
@danielmacsai7766 жыл бұрын
solve sqrt(x+5) = x^2-5 good luck:)
@i_am_anxious026 жыл бұрын
Sqrt(x+5)^2=(x^2-5)^2-> x+5=x^4-10x^2+25-> x^4-10x^2-x+20=0 So x is either -(1/2)-sqrt(17)/2, (sqrt(17)-1)/2, 1/2+sqrt(21)/2, or 1/2-sqrt(21)/2
@danielmacsai7766 жыл бұрын
u sure about that?
@i_am_anxious026 жыл бұрын
Dániel Mácsai Yeah, just square the dare root. I mean, if you want only the square root being positive, fine, but then you just like to nitpick. Squaring cancels with the square root, and I used the polynomial of (a+b)^2=a^2+2ab+b^2 to solve (x^2-5)^2.
@danielmacsai7766 жыл бұрын
Yeah, only two of those are right The challenge here is to find the answers without computer/quartic formula. Try it with only paper and pencil:)
@i_am_anxious026 жыл бұрын
Dániel Mácsai what quadratic formula? It’s a quartic equation.
@VanNguyen-kx6gx2 жыл бұрын
1 another resolution.
@eboone6 жыл бұрын
hello
@neilgerace3556 жыл бұрын
More backwards writing :)
@x-warrior85176 жыл бұрын
i solve it by using trigonometry.Thanks ❤
@Drk9503 жыл бұрын
How?
@jblac2016 жыл бұрын
🖋🖍 Do ∫(3x³-x²+2x-4)/(√(x²-3x+2))dx from 0 to 1 🤣🤗🤔
@lamnguyenthanh61784 жыл бұрын
De hiểu rõ
@zuccx996 жыл бұрын
🗿
@Hossein5182 жыл бұрын
i have a better way to solve this .
@calvinjackson81103 жыл бұрын
Very tricky and not direct. Very non intuitive. The majority of us do not think like this. Most of us would not see to do this slight of hand approach. Unfair problem. Only someone like you could be expected to see to do this.