@@blackpenredpen Do you really think that you do math with this absurd imaginary unit?
@ИванЧимша-Гималайский5 жыл бұрын
+Rahul Can't blame him lol
@gregorystocker9715 жыл бұрын
Сергей Мишин imaginary numbers are used in a ton of real world physics situations. The name makes them seem like someone made them up for no reason, but they are very legitimate.
@@pedroandrade8727 sounds like a MC villager trying to scam you into giving some emerald.
@MrCoffeypaul5 жыл бұрын
That was fast!
@pyglik22965 жыл бұрын
I was genuinely frightened for he NEVER stops in his videos :)
@DjVortex-w5 жыл бұрын
At 11:05 you can almost hear the cogwheels turning in his head...
@alexharkler5 жыл бұрын
3:03 "Of course, 1 is equal to 2" -BPRP 2019
@anshumanagrawal3463 жыл бұрын
3:03 actually
@not_allen11073 жыл бұрын
1 = 2
@donwald343627 күн бұрын
@@not_allen1107 There are four lights
@hamiltonianpathondodecahed52365 жыл бұрын
this question is very easy using the fundamental theorem of engineering *sin x ≈ x* | x in radians | *π ≈ 3* using these we get the answer as 0.05 %error of 4.5%
@Tactix_se3 жыл бұрын
💀💀💀💀
@RealFreshDuke3 жыл бұрын
@@analog_joe No, it's pi = 3.
@ajety2 жыл бұрын
@@analog_joe Dude it's just a joke
@glendenog90952 жыл бұрын
@@ajety Jokes are supposed to be funny. Like how funny it is that the top rated comment is from a bunch of math fanboys who are so divorced from reality that they accept 3 degrees as an input for a special case solution without question even though angles (and all measurements) are analog values in every case with tolerances (aka limits), and instead of contemplating their own limitations are like "engineers are sooo dumb hyuk hyuk". Congrats you have solved sin(3), a contrived impossibly accurate degree reading, which was solved to the n'th digit long ago to actual usable digits, using the most convoluted and inefficient method. I'm not entirely sure who didn't get the "joke" here :)
@odysseasv77342 жыл бұрын
@@glendenog9095 HAHHAAHHAHAHHAAHAHAH WHAT
@bruhmoment18355 жыл бұрын
Bprp: *Runs math channel like a boss* Also bprp: *1=2*
@aravindmuthu953 жыл бұрын
I almost read as "Bprp runs meth" 😂😂
@jeremyzamayla26075 жыл бұрын
"1+1+1 =3" We did it boys, an A in maths 👏👏👏
@ffggddss5 жыл бұрын
That's from John Lennon, _The Beatles,_ "Come Together" (Abbey Road) - "One and one and one is three, "Got to be good lookin' cause he's so hard to see, "Come together "Right now, "Over me." Fred
@THE-BIG-JP-REILS5 жыл бұрын
ffggddss I HAD THE SAME EXACT THOUGHT
@colleen94935 жыл бұрын
Math*
@captasticts84195 жыл бұрын
@@colleen9493 both is fine
@kaaiplayspiano72004 жыл бұрын
18-15=3
@IoT_5 жыл бұрын
I work as a teacher of control systems which involves a lot of different math subjects. Thank you for showing HOW TO TEACH STUDENTS. I like how you tell in detail mathematics. I really appreciate it.
@blackpenredpen5 жыл бұрын
Eg. M wow, what a comment! Thank you!!
@kennylim30345 жыл бұрын
Really shows you even an expert has troubled moments
@Roescoe2 жыл бұрын
processing processing, I felt like I was in the moment.
@spinningcycloid64473 жыл бұрын
He teaches very friendly. Even for a simple calculation, he explains very kindly. So I can understand whole topic. Thank you for your works!
@Mihau_desu5 жыл бұрын
"1 is equal to 2" - bprp 2019 Btw. Great video
@blackpenredpen5 жыл бұрын
Sigma 1 thank you!
@Periiapsis5 жыл бұрын
For sin and cos of 15° couldn't you have also used the difference formula for sin and cosine? sin(45 - 30) = sin(45)cos(30) - cos(45)sin(30) cos(45 - 30) = cos(45)cos(30) + sin(45)sin(30)
@blackpenredpen5 жыл бұрын
Perihelion Orbit yea. You can also use that picture to prove that formula.
@themcscripter21113 жыл бұрын
I think he was proving the sum and difference formula using complex numbers
@MattMcIrvin2 жыл бұрын
I can never remember those formulas, but I can remember how to derive them with complex numbers. BPRP took a while to do it because he was being very explicit about writing out all the steps. For the 15 degree bit, I figured he was going to bring out complex numbers again to derive the half-angle formulas, which is definitely how I would do it, but he had a cleverer way.
@epikherolol81892 жыл бұрын
@@MattMcIrvin what's there in remembering them, it's not even that hard, for me it's like if it's cos formula then all cos terms together+- sin terms together If it's sin formula then angles exchange
@Zain-nc1ww2 жыл бұрын
@@MattMcIrvin The way I was taught to derive the half angle formulas was to first derive cosine's double angle formula, then isolate cos(a), and plug (π/2)-a into the cosine half angle formula to derive the sine half angle formula cos(a+b) = cosacosb - sinasinb cos(a+a) = (cosa)^2 - (sina)^2 cos(2a) = (cosa)^2 - (sina)^2 cos(2a) = 2(cosa)^2-1 (cos(2a)+1)/2 = cosa^2 √((cos(2a)+1)/2) = cosa √((cos(2((π/2)-a)+1)/2) = cos((π/2)-a) √((cos(π-2a)+1)/2) = cos((π/2)-a) √((1-cos(2a))/2) = cos((π/2)-a) √((1-cos(2a))/2) = sin(a) I'm curious how you'd derive it with complex numbers; I've never seen that before
@SyberMath6 ай бұрын
Nice problem! I have 2 comments: 1. 23:52 it's easier to just say "divide the hypotenuse by sqrt(2) to get the leg so it's sqrt(3)/sqrt(2)" 2. 24:44 the second leg should be sqrt(3)/sqrt(2) not sqrt(3)/sqrt(3) 😊
@patrickmckinley87394 жыл бұрын
Digging through some of my old papers, I found where I ran this calculation years ago . I just ran the half angle formula on 30 degrees to get the sin and cos of 15 degrees. I love your construction to do it geometrically - never seen that before.
@genio2509Ай бұрын
You could also do Sin(45-30)! (Not factorial)
@Metalhammer19934 жыл бұрын
Wohoo I'm not the only one deriving the angle sum from Euler's formula! My professor thought me mental xD. Didn't subtract points but asked me if I'm slightly troubled that I find that simpler than geometric proofs xD
@gutschke2 жыл бұрын
"If your only tool is a hammer, ..." And to be honest, Euler's formula does make for a wonderful hammer.
@whyit4875 жыл бұрын
I like how this went back to your old video about special phi triangles! Also, I loved how there's such an elegant way to find an exact sine of an angle! Great job on the video.
@andrew4ig5 жыл бұрын
Me on exams: 11:03
@rafaelv.t14035 жыл бұрын
im the opposite
@alinajib47885 жыл бұрын
@@rafaelv.t1403 but you're gay
@andrew4ig5 жыл бұрын
Rafael V.T ok
@AbhishekKumar-jg7gq3 жыл бұрын
😁😁😁😁😁😁😁😁
@jensonjoseph62964 жыл бұрын
I learnt a lot of special specials for the 1st time, though I knew sin (18) and sin (15) algebraically. Also the proofs of sin (a-b). Thank you, you are a special special teacher : )
@blackpenredpen5 жыл бұрын
Check out Toby's (Tibees) Channel: kzbin.info/www/bejne/Y3LcdmSNpcyiabM Purchase your Klein Bottle Kitty t-shirt here crowdmade.com/collections/tibees/products/tibees-toby-unisex-t-shirt Check out Chester's Channel: kzbin.info/www/bejne/r3vMoYdtn9uNh9k Thanks! 100/(1-x)
@nuklearboysymbiote5 жыл бұрын
Ok but to prove Euler's formula you NEEDED to already know the compound angle formulae. But here u r USING Euler's to show the compound angle… CIRCULAR REASONING
@obama21505 жыл бұрын
at 17:30 i think it would be better to sqrt the 16 to 4and the bottom. this would've made it easier later on at 30:34 since both partheses would have denominator of 8sqrt2 to make it much easier to simplify? since both sides will have a 4 and a sqrt2 gr8 vido m8 tho.
@hustler3of4culture35 жыл бұрын
Without watching I'm gonna say π /60.
@hustler3of4culture35 жыл бұрын
Ok this is better than my guess
@hussiensayed12445 жыл бұрын
Can we do this without triangels 1]for 18° For this equation sin(X)=cos(4X) X=18° satisfies the eq where 4*18=72=90-18 We know cos(4X)=2cos^2(2X)-1 =2(1-sin^2(x))^2-1 Let y=sinx Then y=1+8y^4-8y^2 8y^4-8y^2-y+1=0 This eq has 4 solutions but one of them is sin18 8y^2(y^2-1)-(y-1)=0 (y-1)(8y^2(y+1)-1)=0 y=1 is a sol but not sin 18 cuz sin90=1 8y^3+8y^2-1=0 8y^3+4y^2+4y^2-1=0 4y^2(2y+1) + (2y-1)(2y+1)=0 (2y+1)(4y^2+2y-1)=0 y=-0.5 is a sol but not sin18 cuz sin 210=-0.5 4y^2+2y-1=0 y=(-2±sqrt(16+4)) /(2*4) =0.25(-1±sqrt(5)) Two solutions but we have one +ve solution and we know sin 18 is +ve Then sin 18° =0.25(-1+sqrt(5)) Cos 18° =sqrt(1-sin^2 (18)) =sqrt(1-(6-2sqrt(5))/16) =sqrt(5-sqrt(5))/2sqrt(2) 2]for 15° Cos 30=2 cos^2(15)-1 Cos15=sqrt((1+sqrt(3)/2)/2) =sqrt(4+2sqrt3)/2sqrt2 =sqrt(3+2sqrt3+1)/2sqrt2 =sqrt((sqrt3)^2+2(sqrt3)+1))/2sqrt2 =sqrt( (sqrt3+1)^2 ) /2sqrt2 =(sqrt3+1)/2sqrt2 Sin15=sqrt(1-cos^2(15)) =sqrt((1-sqrt(3)/2)/2) =sqrt(4-2sqrt3)/2sqrt2 =sqrt(3-2sqrt3+1)/2sqrt2 =sqrt((sqrt3)^2-2(sqrt3)+1))/2sqrt2 =sqrt( (sqrt3-1)^2 ) /2sqrt2 =(sqrt3-1)/2sqrt2 3] finally sin 3°=sin (18°-15°) =sin18°cos15°-cos18°sin 15°
@lambda26932 жыл бұрын
Woah nice sol
@unidentifieduser5346 Жыл бұрын
my brain be like😮💨
@sharmsma5 жыл бұрын
The result should be almost equal to pi/60. For small angles, sin x approximates x with x in radians. Converting 3 degrees to radians is just multiply with pi/180.
@blackpenredpen5 жыл бұрын
sharmsma yup that’s coming up soon
@DavidvanDeijk5 жыл бұрын
(pi/60) - (pi/60) ^ 3 / 6 is a better estimate, expanded the taylor series by one
@astralchan5 жыл бұрын
11:02 Me during an exam
@blackpenredpen5 жыл бұрын
Zackary자카리 Me during a video.
@keescanalfp51435 жыл бұрын
@@blackpenredpen, great. I can't but admire that
@astralchan5 жыл бұрын
@@blackpenredpen SENPAI NOTICED ME ~~
@kaaiplayspiano72004 жыл бұрын
@@astralchan is it legal to say Japanese-originated words to a chinese person?
@kaaiplayspiano72004 жыл бұрын
@@keescanalfp5143~ I CAN
@bayanmehr96635 жыл бұрын
Super fun video :) I love how you talk about angles like they are people
@blackpenredpen5 жыл бұрын
Bayan Mehr hahaha thank you
@ozonejgs28875 жыл бұрын
Tibbes is awesome, glad that you shouted her out. On a similar note, another great video. I've had less time to watch them because of my final high school exams (GCSEs), but I'm excited to binge watch all of them after they finish. I'm sure that after your videos, I'll have no problem getting the top grade in my Maths exam =D
@easygoing17195 жыл бұрын
I take my pen and ruler, draw a Triangle with one angle of 3 Degrees and an angle of 90 Degrees and then use the Definition of sin. I am a simple man...
@gumanelson20075 жыл бұрын
And then hope your pencil is infinitely sharp and the angle is perfectly 3 and you measure the distance very accurately.
@darkseid8565 жыл бұрын
@@gumanelson2007 never knew that one can make angles using a ruler .
@akunog27085 жыл бұрын
@@darkseid856 It's easy to make relatively precise right triangles using a ruler if you know the length of the legs.. but yeah, since the length of the legs is kind of the goal it's not helpful here hehe. This is probably why ~easygoing~ considers himself a simple man.
@darkseid8565 жыл бұрын
@@akunog2708 yea that was basically what i was saying
@gumanelson20075 жыл бұрын
@@darkseid856 after using a compass or protractor
@lukebuenafe34905 жыл бұрын
Men you deserve 1million subscribers and you deserved the position of my professor in calculus
@andresfelipemunoz44174 жыл бұрын
For a long time I looked for a channel like yours and when I found it it was better than I thought, friend you are the best, ahhhhh and by the way I will do the 100 integrals with you, hehe I already finished the derivatives but or my god I do not know how you resist so much standing time the truth I admire you very much
@رشاداليامي2 жыл бұрын
The video is old, but it contains valuable skills, and I benefited a lot from it. Thank you very much, Mighty Professor
@tranminhhieu94925 жыл бұрын
No one: Minecraft Villager: 11:03
@demetriuspsf5 жыл бұрын
Mad props for not cutting the video when solving the problem.
@gastonsolaril.2375 жыл бұрын
Amazing, my bicolor pen friend... It's amazing how with a "few" roots and triangles, you can express sines and cosines in a closed form. Good work!
@taylormanning27092 жыл бұрын
11:30 when you gotta read your own notes because you forgot how genius you used to be
@sarthakhingankar9158 Жыл бұрын
I love the silence starting from 11:02 😂😂😂😂😂😂
@not_vinkami5 жыл бұрын
Great! Let's find the relationship between sin(3°) and sin(15°) and construct the one-fifth angle formula!
@Drk9504 жыл бұрын
Mmm I tried this way and i got a fifth order polynomial. Let A=3°, x=sin A, y=sin (5A), then y=16*(x^5) - 20*(x^3) + 5x. Problem: there Is no Solve formula for 5th order polynomial (Abel's theorem). So, i had to watch the video xD
@eliasmazhukin20092 жыл бұрын
@@Drk950 16x^5 - 20x^3 + 5x = 0 x(16x^4 - 20x^2 + 5) = 0 The root x = 0 is extraneous, ignore that 16x^4 - 20x^2 + 5 = 0 Let w = x^2 16w^2 - 20w + 5 = 0 Which is a quadratic equation :]
@NHL172 жыл бұрын
This is evidence that mathematicians really don't mind that long walk for a short drink of water
@moskthinks98015 жыл бұрын
(In funny, annoyed tone) No! Prove it all geometrically! :cat:
@blackpenredpen5 жыл бұрын
M. Shebl lol. I actually thought about it and it shouldn’t that bad. I could just do the same procedure when I constructed the 15-75-90 special special right triangle.
@saharhaimyaccov49775 жыл бұрын
11:03 .. A magical moment of thought .. See how your mind works :) Like it
@leonhardeuler68115 жыл бұрын
Can someone explain to me why he paused
@aldobernaltvbernal87454 жыл бұрын
@@leonhardeuler6811 to think
@ghoufranabokhalaf49645 жыл бұрын
Thats really fantastic....you give us passion to learn new things....you've new subscriber from Aleppo, Syria 💐🌸
@blackpenredpen5 жыл бұрын
Glad to hear! Thank you!
@ferramatis5 жыл бұрын
One of the best video ever upload on KZbin. Thanks you
@diegomullor86055 жыл бұрын
Dude you're so amazing. I really appreciate all of your work. I'm 14 years old and I really like math. I never liked how it's explained on schools, it seemes really basic to me and doesn't give a chance to us math enthusiasts to go further. Thanks to people like you, I get to learn more about my passion, which is math. People often see math as a hard thing which involves tons of numbers, but in reality, thanks to people like you, I realised it's really about cool concepts an ideas. Keep up the good work, bprp, because what you're doing is amazing and for some of us, a lifechanger. Sorry for grammar mistakes, I'm spanish.
@artemetra32625 жыл бұрын
i strongly agree with every single thing you said. i think teachers should make the students *interested* in the subject and show its actual beauty. bprp must be an excellent teacher that i would LOVE to have. P. S. i'm Ukrainian and i thought Europe had better education, but i can't see any difference though... guess we are screwed ¯\_(ツ)_/¯
@diegomullor86055 жыл бұрын
@@artemetra3262 Yeah you're right. People won't be interested if you just show formulas without proving them. Math is about concepts and ideas. We all really need to work on fixing education for next generations.
@ningchin84765 жыл бұрын
@@diegomullor8605 That's why I endorse Aops. Check them out at aops.com They've been a life changer for me!
@jzanimates23525 жыл бұрын
Congrats on 300K!!!
@blackpenredpen5 жыл бұрын
JZ Animates thank you!!!!!
@vandanakhullar5228 Жыл бұрын
I have solved the value of sin(1°) . I have leveraged the information from you about sin(3°) and applied the formula about sin(x/3) exactly as you did with sin(10°)
@RobertHorton19758 ай бұрын
Completing that rectangle was lovely. Well done.
@rmela45015 жыл бұрын
For cos15 and sin15, couldn't you just use compound formula again...cos(45-30) and sin(45-30)?
@jomama34655 жыл бұрын
@Blackpenredpen
@peterchan60825 жыл бұрын
Ok I get your point, and I also had that in my mind. But then the geometric proof is what gives maths so much fun. Indeed I would expect Mr Chao (aka bprp) to show the geometric proofs for the formulas for compound angles, namely sin(A±B), cos(A±B) and indeed tan(A±B).
@Gold1618035 жыл бұрын
@@peterchan6082 I like to do the geometric derivation of sin(A+B), but that one is all you need. You can use oddness of sine/evenness of cosine, sinA=cos(90-A) and vice versa, and tan=sin/cos to get all the others from there :)
@peterchan60825 жыл бұрын
@@Gold161803 Not quite enough. There are more to be desired. I already have several other geometric proofs of the compound angle formulas (some are simpler and even more beautiful than the one presented here) . . . indeed I've even done one for tan(A±B) from scratch, without the need to resort to sin(A±B)/cos(A±B)
@Gold1618035 жыл бұрын
@@peterchan6082 well yeah, I know there are several lovely proofs of all of them, I'm just saying you can also just derive them all from sine of a sum if you'd rather be boring like me :p
@simmaksimenko3711 Жыл бұрын
I enjoy watching your channel. Thank you. About 40 years ago I was shown a problem. Calculate the sine of 13 degrees. I haven't seen a good solution yet.
@Alians01085 жыл бұрын
3:05 "One is equal to two"
@pietergeerkens63244 жыл бұрын
Astronomical Units: c = G = h = π = 1 = 2
@nimmira5 жыл бұрын
after watching this ... I'm ready to consume 3 large pizzas (with each slice's tip at 18 degrees wide)
@blackpenredpen5 жыл бұрын
nimmira hahaha nice!!
@padla6304Ай бұрын
10:00 it is similar to the compass and ruler construction of a pentagon cos(72°) = (√5-1)/4 from here it is easy to find (x)
@jomariraphaellmangahas199111 ай бұрын
I'm gonna thank you for this video. So glad that I created a graph in desmos that has 120 point unit circle coordinates.
@topilinkala1594 Жыл бұрын
Only one I can remember from top of my head is double angle formula for cosine. Every other one I need I always derive before I use them. It keeps your wits as it is finicky to get all those cosines and sines and what not correct. Helps you keep everthing tidy.
@miniwizard5 жыл бұрын
厉害!But my abacus doesn't have the square root function, so I'm still unable to calculate the exact value.
@juxx9628 Жыл бұрын
oh, just approximate square roots the archimedes way. you know, dividing, squaring and adding some bunch of numbers and taking days to just get 7 decimals of precision.
5 жыл бұрын
Congrats for gaining 300k subscribers 👏
@luddelagerstedt64584 жыл бұрын
This pause was very nice, it gave me just enough time to figure it out
@natealbatros38485 жыл бұрын
Will you do multivariable calc vids ? Or pde?
@shreekantsamdarshi8785 жыл бұрын
I am from India. Your explanation is really awesome. It's very nice. I haven't words for appreciation. Awesome awesome awesome.........................
@alessandromarchetti27665 жыл бұрын
By knowing the sin and cosin of 3° we can also get sin and cosin for every angle multiple of three. For example sin(117°) = sin(120°-3°) = sin120°×cos3° - cos120°×sin3°. If you were to use the cubic formula on that equation you got a long time ago for the sin of 10 degrees (8x^3-6x+1=0 ; x=sin10°) we could then do the following: sin(7°) = sin(10°-3°) = sin10°×cos3° - cos10°×sin3° sin(4°) = sin(7°-3°) = sin7°×cos3° - cos7°×sin3° sin(1°) = sin(4°-3°) = sin4°×cos3° - cos4°×sin3° Then using sin^2(θ) + cos^2(θ) = 1 we can get the cosin of 1°. Knowing sin(1°) and cos(1°) we can use sin(α+β) = sinα×cosβ-cosα×sinβ and every other related formula to get the sin and cosin of every angle expressed by an entire amount of degrees.
@MattMcIrvin2 жыл бұрын
I was watching this and wondering if the sine and cosine of any whole number of degrees was algebraic. But I poked around on Wolfram Alpha and realized that of course it is, because e^i*(one degree) = e^i*(pi/180) = (-1)^(1/180), so any sum of degrees can be expressed algebraically in terms of integer roots of -1. (Wikipedia says that defined trig function values of all rational multiples of pi are algebraic, which would incorporate all integer degrees. That is not to say they are *constructible* numbers, but I guess bprp just proved that trig functions of the multiples of 3 degrees are constructible?) (Edit: Yes, he did. Apparently any angle of a*pi/b degrees is constructible if and only if, in simplest form, b is a product of *unique* Fermat primes and a power of 2, and 3 degrees is pi/(3*5*2^2). 1 degree is not since its prime factorization has two 3s in it.)
@useruser4003 жыл бұрын
BPRP typically blasts through complex integral calculus, leaving melted markers and white boards in his path. Viewers lag, struggling to follow his genius. BPRP hits geometry. Brain: “Halt and catch fire.” One of the best KZbin videos ever! Take my “Like,” Sir! 🤣🤣🤣🤣🤣🤣🤣
@sauldibari65982 жыл бұрын
You know it’s serious when he becomes blackpenredpenbluepen
@yaleng45975 жыл бұрын
0.3M subscribers. Congrats!!!
@blackpenredpen5 жыл бұрын
Yale NG yay thank you!
@hbarudi11 ай бұрын
Nice of you to prove the angle addition and subtraction trigonometric identities.
@AsuBeats3 жыл бұрын
6:20 thanks for a new way of proving angle difference. It blew my mind.😀🔥
@edsanville5 жыл бұрын
11:04 - I like my math videos like I like my Jerry Springer videos: Raw and Uncut.
@blackpenredpen5 жыл бұрын
Edward Sanville I once put “raw footage” in my title but YT demonetized it.
@pianoforte17xx483 жыл бұрын
@@blackpenredpen filthy youtube
@ashotdjrbashian9606 Жыл бұрын
Another approach (and this was done about 1000 years ago) is to find the value of sin and cos of 18 degrees. For that you use regular pentagon with side 1. Then by the same difference formula you can find sin12 because 12=72-60. After that just use the half angle formula twice. For people asking about sin of 1 degree, after finding sin of 12 degrees, you use triple angle formula, solve the corresponding cubic equation to find sin4. After that use the half angle formula twice and get sin1 !
@debdami5 жыл бұрын
At 16:20, there's no need to develop the square. The equation on the left gives x^2=1-x and the red square root becomes sqrt(1-(1-x))=sqrt(x)
@hesamsoftware5 жыл бұрын
Exactly a perfect relation between complax analysis and real number , i love them ❤❤❤❤
@juliakuok Жыл бұрын
It’s 4am, I have lessons at 9am, and idk why am I watching this now.
@kutuboxbayzan59675 жыл бұрын
[Cos(x)+isin(x)]^n=cos(nx)+isin(nx Find formula cos (nx) For n is integer.
@jayapandey25415 жыл бұрын
Also after calculating sin and cos of 45 and 30 why not just subtract? Everyone knows that 5+5+5=15 but I know that 45-30=15.
@SatyaVenugopal5 жыл бұрын
That is kind of what he did. Just... geometrically
@christianalbina62175 жыл бұрын
Are we not able to to 45 degrees divided by 15 degrees or is that not allowed?
@darkseid8565 жыл бұрын
@@christianalbina6217 boi thats not how it works ! (As much as I know it doesn't )
@ashtonsmith17304 жыл бұрын
if you want to do it with algebra you can, he did it with geometry
@joshmcdouglas17203 жыл бұрын
You could do this to find the values of sin15 and cos15 but you would need to use the angle difference identities again
@Θρησκόληπτος4 жыл бұрын
i spotted circular reasoning at the proof of the angle sum formula: in order to prove euler's formula you need to know the derivative of sinx, which requires sin(a+b). So you can't use the result to prove the base. If you know any proof of the euler's formula without the derivative of sinx, please inform me
@Θρησκόληπτος4 жыл бұрын
cos(a+b) and sin(a+b) can be proven using the dot and the cross product, respectively
@executorarktanis23234 жыл бұрын
every triangle is special for me
@kaaiplayspiano72004 жыл бұрын
11:03 KZbin when the ads buffer 20:18 KZbin when the actual video buffers
@trueriver19505 жыл бұрын
Love the way you base this proof on (1) = (2)
@jensraab2902 Жыл бұрын
I know this is an old video that the Almighty Algorithm just recommended to me so my apologies for the late comment. I guess you won't see this anyway but if you do, I'll say that it was a really cool video. It's not that I was losing sleep over the exact value of sin(3°) but it was fun to see it developed. One comment about that one instant where you "buffered" for a good number of seconds and towards the end of the video you said that maybe you should have prepared better. I'll say: don't. It was really satisfying that even folks with advanced math knowledge don't always see everything right away. So, kudos for not having this edited out! I love your channel!
@xnick_uy5 жыл бұрын
At 16:20 you could also have used that your value for x solves x^2 = 1 - x, and therefore (x/2) ^2 = x^2/4 = (1-x)/4. Then the simplification under the root sign becomes a bit easier and/or faster.
@snbeast95455 жыл бұрын
Take a shot every time he says "of course".
@stevesun110015 жыл бұрын
The Euler formula is much harder to prove than trig identities, bro!
@sergioh55155 жыл бұрын
Very nice to use Euler's formula and geometry 💕
@blackpenredpen5 жыл бұрын
Sergio H yea!!
@szerednik.laszlo5 жыл бұрын
I should learn for my exams right now :D Here we go again bois!
@harrisons625 жыл бұрын
Laci yeah mine is next week :(
@cobracoder61234 жыл бұрын
19:43 "everybody is 60 degrees inside" Not me. I'm dead inside
@ashtonsmith17304 жыл бұрын
so 0?
@cobracoder61234 жыл бұрын
@@ashtonsmith1730 yes pretty much
@noahtaul5 жыл бұрын
You tried to sneak in the true proof of the angle addition formula with the boxes, and you thought we wouldn't notice!
@blackpenredpen5 жыл бұрын
noahtaul hahahaha yea
@VibingMath5 жыл бұрын
An elegant way to combine euler formula and trigonometry 👍
@robertstecher Жыл бұрын
mistake reversing 2 and sqrt 3 in the triangle at 23:33?
@15foxa192 жыл бұрын
In my head using small angles i worked out pi/60 to be around 0.05236 so i will watch and see how close i was
@Mernusify5 жыл бұрын
Fun fact: the 6 trig ratios of ANY multiple of pi/60 (3 degrees), for that multiple between 1 and 30, can be expressed in terms of nested radicals. All the other angles in between require you to take the cube-root of a complex number. An equivalent expression for sin(pi/60) is: (1/8)*[sqrt(10+5*sqrt(3)) - sqrt(2+sqrt(3))-sqrt(2*(2-sqrt(3))*(5+sqrt(5)))] You could probably calculate the cos(2pi/15). Answers (1/4)*sqrt(9-sqrt(5)+sqrt(30+6*sqrt(5)))
@CurryMuncher22 жыл бұрын
11:00-12:05
@Firefly2563 жыл бұрын
Because we have sin(3), we can use that formula to find sin(6) because of sin(3+3), meaning we can find sin(any multiple of 3)
@kassemhmady5 жыл бұрын
Time to grab some popcorn 🍿
@PeterLE22 жыл бұрын
This calculation was so much fun. Thx
@DatBoi_TheGudBIAS3 жыл бұрын
Dat moment of silence for the triangle thinking
@jorgeeduardopereztasso61345 жыл бұрын
Nobody: Me after reading the title: WHOT¿ ARE YOU SERIOUUS!?!?!? blackpenredpen: 0:01 #maths4fun
@anshumanagrawal3463 жыл бұрын
Write 0:01 instead 0:00 doesn't work
@user_27934 жыл бұрын
From the fundamental theorem of engineering, this trivially reduces to π/60 ~= 0.0523
@leonardoventura96414 жыл бұрын
No! From the fundamental theorem of engineering π=3 and = = ~=, so sin(30°)=π/60=3/60=1/20
@muskyoxes4 жыл бұрын
i'm totally taking "we know one is equal to two" out of context
@foxman4822 жыл бұрын
I finally understood one of your math videos, I'm so happy!! :)
@bikramjeetdasgupta Жыл бұрын
Another approach can be A=3 5A = 15 sin(3A+2A) = sin(5A) sin3Acos2A + sin2Acos3A = sin(5A) then expand sin3A ...and so on.. put the value .. and find out sinA .. Yeah I know old school and tedious but will save u sanity if solving 100 problems in an assignment.. Btw Great Approach👍
@jesusg.h.2070 Жыл бұрын
The fact that we're all here watching how this man calculates such a random number for 30 min straight just fascinates me
@clubstepdj5 жыл бұрын
you can also proof the cosine difference formula too and use sin(45 deg - 30 deg) and cos(45 deg - 30 deg) to find sin(15 deg) and cos(15 deg)
@ericroberts51194 жыл бұрын
That cliffhanger had me rolling! Had to be the longest awkward pause in youtube history! Haha!!
@ethanchandler39343 жыл бұрын
It’s funny the toby(tibees) looks like a new function
@keepercool985 жыл бұрын
The engineering way: sin(3)~0 😂 Nice video, I really enjoyed.
@warrickdawes79005 жыл бұрын
Or use small angle approximation and say that sin(3 degrees) ~ 3 degrees ~ pi/60, which has an error of only 0.05%