The other parts will be published later. If you cannot wait, then check out my other channel (in Mandarin): kzbin.info/door/rONDbyO94HIrJyfhS6qfjAvideos
@pauljackson34914 жыл бұрын
Well that answers my question. What "dialect" of "Chinese" do you speak? They are in quotes because Chinese isn't just one language and things like Mandarin and Cantonese aren't dialects.
@youkaihenge58924 жыл бұрын
@Michael Bishop I speak and write japanese and I love how its simplified Kanji from the Chinese Dialect 😃 Bad part is Japanese read each Kanji with two or more readings called 音読み and 訓読み
@alfiangunawan59464 жыл бұрын
i just know that you have other channel in mandarin. thanks a lot for making that channel!
@erikkonstas4 жыл бұрын
Why don't you feature your two other channels?
@prateekmourya95674 жыл бұрын
I have really good question for you if alpha and beta are roots of equation x^2-x-1(Fibonacci equation) we define a function f(n)=alpha^n+beta^n then prove that f(n+1)=f(n)+f(n-1)
@douro202 жыл бұрын
We never talked about W in algebra class when I was in college. I think it would had been a good subject for the class.
@thorstenbrandt8739 Жыл бұрын
College is not "scientific" enough...
@maxamedmuuse48824 жыл бұрын
You already know what blackpenredpen will say....hello! lovely voice.
@blackpenredpen4 жыл бұрын
Lol thanks!
@vietphamhung32904 жыл бұрын
@@blackpenredpen you are so cute 😍😍
@pauljackson34914 жыл бұрын
I like it how you say "Let's do some Math for fun." Isn't all Math fun!
@erikkonstas4 жыл бұрын
Only pure, pure math. The things they make seniors study in Greece are outrageous...
@erik-ic3tp4 жыл бұрын
@@erikkonstas, What's wrong with math education in Greece? Your country once pioneered mathematics.
@pbj41844 жыл бұрын
Math by itself is fun but when you're forced to memorize stuff for exams, it loses its value
@erikkonstas4 жыл бұрын
@@erik-ic3tp Man, you don't want to know, it's horrible. And, yes, this is a great shame some of us think could land the country in total despair very soon. Thales's, Pythagoras's, Archimedes's, Euclid's and the other great mathematicians' bones are shaking...
@jofx40514 жыл бұрын
Alright, I am already expecting Lambert function here
@youmemeyou4 жыл бұрын
Ok
@mohammadfahrurrozy80824 жыл бұрын
Lambert function is so cool!
@Nylspider4 жыл бұрын
You thought right
@jcers4 жыл бұрын
I smell Lambert W function incoming I was right
@blackpenredpen4 жыл бұрын
Yes
@gigachadkartik3 жыл бұрын
You can substitute x^3 as other variable and then solve
@Meilo01104 жыл бұрын
You're the reason why I'm good at math, I'm only 17 and I already mastered algebra and some parts of calculus thanks to you. Keep up the amazing work. You deserve 1 million subs or even more. Greatest math teacher ever♾️🙂
@Careerhumresource7 ай бұрын
I'm 11
@Jupiterninja954 жыл бұрын
Whoa!! I didn't know you could divide videos into sections like that!
@blackpenredpen4 жыл бұрын
Yea it’s a new feature. I think it’s so cool!
@nintendoswitchfan49532 жыл бұрын
Same , i think its cool too
@ryderpham54644 жыл бұрын
Woah the new KZbin UI on this video is so cool! I love seeing the timebar all sectioned and labelled ❤️
@advaitanand18644 жыл бұрын
You really explain every problem very well.
@Nylspider4 жыл бұрын
I love the abrupt starts! You always are so excited to get into the math! Are you going to do some videos on the AOIME problems? #YAY
@integralboi29004 жыл бұрын
I wonder what’s going to be in part 2,maybe a infinite power tower?
@integralboi29004 жыл бұрын
*an
@blackpenredpen4 жыл бұрын
Yes. Will release that this coming Friday
@leif10754 жыл бұрын
Important question. I took ln of both sides. Then i divided both sides by x^3 so i have ln x equals ln 2/x^3..Then i took thebderviative with respect to x of both sides to get rid of the ln x and be able to solve for x. Taking the derivative of both sides gets me 1/x equals ln 2(-3x^-4)..therefore solving for x you get x^3 equals -3(ln 2)..so taking the cibe root yiu get x equals the cube root of -3(ln2). Didnt a lot of people do it this way? it's totally valid i dont see why not? Especially if you dont k ow Lambert's function. It's still the same x variable even though i took the derivative so it's the correct value.
@OriginalSuschi4 жыл бұрын
Leif ok after taking the derivative we have 1/x=-3ln(2)/x^4. After multiplying by x^4 we get x^3=-3ln(2) so: x=cbrt(-3ln(2)) The only things possible here are: 1. We did a mistake 2. There are more than one answer for this. 3. Both solutions equal to each other. When this is right, you've proven that e^(W(3ln(2))/3)=cbrt(-3ln(2))... But it's sadly not :( It's really weird. I can't spot the mistake here... bprp pls help
@angelmendez-rivera3514 жыл бұрын
Leif No, it isn't valid. The fact that two functions are equal to each other at a point does not imply their derivatives are equal to each other at that point. In other words, f(x) = g(x) at x = c does not imply f'(x) = g'(x) at x = c. I have very simple counterexample to prove this. sin(x) = cos(x) if x = π/4. Taking the derivative yields cos(x) = -sin(x), and substituting x = π/4 implies 1/sqrt(2) = -1/sqrt(2), which is false. This just proves that taking the derivative is not a valid operation here.
@ffggddss4 жыл бұрын
Ah, I think I can see how this will go. First take ln of both sides, then a little sleight of hand to make it fit the Lambert W function. Same approach for both problems; call the constant on the RHS, "a" : x^(x³) = a x³ lnx = ln a e^(3 lnx) lnx = ln a . . . . . . [from this line on, is a correction of what I had initially.] e^(3 lnx) 3 lnx = 3 ln a 3 lnx = W(3 ln a) x = e^(⅓W(3 ln a)) With a = 2, 3, the results are: 3 ln 2 = 2.07944154...; W(3 ln 2) = 0.8706335...; x = e^(⅓W(3 ln 2)) = 1.336709735... 3 ln 3 = 3.29583687...; W(3 ln 3) = ln 3 = 1.0986...; x = e^(⅓ ln 3) = 1.442249570... Post-watch: AHA! I should have gone . . . x = e^(⅓ ln 3) = ∛3 = 1.442249570... Fred
@adamwright46344 жыл бұрын
I just raised both sides to 1/3, then took the natural log, and then the product log, and then just solved for x to get, x=e^w(ln(2^1/3)) for the first one, same method for the other one as well
@Vivek-io3gj2 жыл бұрын
Year late reply but that doesn’t work because then it would be 1/3 x^3 in the exponent and would not cancel the cubed
@adamwright46342 жыл бұрын
@@Vivek-io3gj could you not swap around the exponents?
@Vivek-io3gj2 жыл бұрын
@@adamwright4634 you cant because it’s x^(x^3)^1/3 not x^((x^3)^1/3)
@youkaihenge58924 жыл бұрын
Could you do a video showing that if a Sequence is "Cauchy" that it converges? 🙂 One of my favorite Theorems.
@arctan-k4 жыл бұрын
3:25 We say kinda same in Kazakh
@rob8764 жыл бұрын
Thought you might be interested in this :- written in a language that won't die too soon: -- cannot declare variables in postgresql - we're using 'from ( select 5.0*exp(5.0) as z ) as declarations' instead with recursive lambert_w as ( select z, 1 as n, case when z 1.0e-41 ) select n, w, w*exp(w) from lambert_w And, in a language that is about to die (VBA): ---------------------------------------------------------------------- ' The Lambert W function is the function W(x) such that W(x)*exp(W(x)) = x ' or W(x*exp(x)) = x, since W(W*exp(W)) = W if we take W of both sides of the above equation. Public Function LAMBERTW(x as double) As Double Dim W, eW, WeW, WeW_x, dW As Double ' First guess for Lambert W If x
@sobhansyed44824 жыл бұрын
you can also make e^[(1/3)w(3ln3)] into cube root 3 by making the first 3 in w(3ln3) e^ln3 cuz it becomes w(ln(3)e^ln3) they cancel so it becomes ln3 then e^(1/3 ln3) can become e^(ln(3^(1/3)) e and ln cancel so you end up with 3^(1/3)
@angelmendez-rivera3514 жыл бұрын
Mmm... yes and no. The Lambert W map is multivalued. So while one of the two branches -1 and 0 will evaluate to this, its objectively more useful to leave it in terms of the Lambert W expression because of the branches.
@hamiltonianpathondodecahed52364 жыл бұрын
umm didn't he do this in the video ?
@michaelroditis19524 жыл бұрын
Man I love you! You are probably the most friendly guy on youtube!
@DanBurgaud4 жыл бұрын
I like how you manipulate ln, e, W to come up with great solutions...
@einsteingonzalez43364 жыл бұрын
3:23 So I analyzed the Chinese that you spoke in your channel, and found out that it's 二分的[what number] or 三分的[what number], and so on. That means a half, a third, or a specifc number of times that the number in the numerator is being divided.
@JordHaj4 жыл бұрын
6:01 this reminds me infinitely nested Michael Jordans!
@Kdd1604 жыл бұрын
很棒的視頻!我先解決了問題,然後看了您的視頻。您解決的方法是完全相同的:))
@CC--qn4gf4 ай бұрын
That last demonstration was HOLY
@robsbackyardastrophotograp88854 жыл бұрын
I like the little timestamp chapters. When did YT add this?
@christianmanuba5394 жыл бұрын
Hey! I know this is a bit irrelevant to the topic of this video but can you try and solve inverse laplace using contour method? Thanks😊😊
@prashantshukla60184 жыл бұрын
Your the best mathematician PLZZ can u make a video on question of Indian prmo questions they're very tough.. thankyou sir
@aditya_01_jha4 жыл бұрын
Hi sir great job. I am from India Love you sir♥️♥️♥️♥️♥️
@arctan-k4 жыл бұрын
btw, in 6:49 we can do it until the number gets bigger than e^(1/e), this is kinda cool
@blackpenredpen4 жыл бұрын
Yea if u only have finite amount of x
@hilmi-litv11794 жыл бұрын
I don't know why but I love this guy
@ejb79694 жыл бұрын
It's the fish, and the smile, and lately, that little beard ... ... "isn't it?" You rarely get any of that with math teachers.
@alanclarke4646 Жыл бұрын
In the Observation, where does the 3= ( x to 3rd power) come from?
@eriktruong98564 жыл бұрын
Are you allowed to derivate both sides of the equation instead of using the W function?
@2ndtik4 жыл бұрын
Pre-celebration for your channel getting 500k subs!!!!
@ralphocava41304 жыл бұрын
Best outro music for math... 2020 is extracting the good juice from people...
Since e^(⅓W(3ln3)) is the same as ³√3, which is basically 3^⅓, does that mean that e^W(3ln3) is 3?
@nasserdawood21713 жыл бұрын
For eq(1) x^x^3 = 2 We can also use ssrt method. (X^3)^(x^3) = 2^3 x^3 = ssrt(8) x = (ssrt(8))^(1/3)
@lgooch3 жыл бұрын
You can use it in bith
@cavansirhasanzada17554 жыл бұрын
Excellent work
@Chill----4 жыл бұрын
Blackpenredpen you solved the question elegantly. Very much impressed!
@musicisthefoodofthesoul4 жыл бұрын
I’m new to this channel. The π at 0:29 looks like the π in 3blue1brown 😁
@blackpenredpen4 жыл бұрын
Because it is! : ) I got it from his merch store!
@tungstengaming34403 жыл бұрын
I love this channel
@gigachadkartik3 жыл бұрын
Say x^x^3 = k Put x^3 = t this means x=t(1/3) (t(1/3))^t =k t^t/3 =k t^t=k^3 If k=3 by observation t=3 aka x=3^(1/3) If k=2 solve t^t =8, t is about 2.9 aka x=1.33
@R2242V3 жыл бұрын
Thank you, I was looking for this kind of solution.
@equalcell15554 жыл бұрын
Where is your old board?
@danikhan51854 жыл бұрын
Helooo blackpenredpen.I love ur videos and they make math a lot more interesting. can you plz help with this trigonometric question: 2cos^2x - sin^2x - 2sinx - 1 = 0. Thanks!
@angelmendez-rivera3514 жыл бұрын
cos(x)^2 = 1 - sin(x)^2, hence 2·cos(x)^2 = 2 - 2·sin(x)^2. Therefore, 2·cos(x)^2 - sin(x)^2 - 2·sin(x) - 1 = 0 is equivalent to 2 - 2·sin(x)^2 - sin(x)^2 - 2·sin(x) - 1 = 1 - 2·sin(x) - 3·sin(x)^2 = 0, which is equivalent to 3·sin(x)^2 + 2·sin(x) - 1 = 0. Hopefully that helps you finish it.
@integralboi29004 жыл бұрын
That = cos(2x) + cos^2(x) -2sin(x) -1 = cos(2x) - sin^2(x) - 2sin(x) = 1-2sin^2(x)-sin^2(x) - 2sin(x) = 1-3sin^2(x)-2sin(x)=0 I’m pretty sure you know how to use the quadratic equation, so I’ll leave it here.
@jofx40514 жыл бұрын
Plugged identity cos^2(x)=1-sin^2(x); you would solve for sin x = 1 or sin x = -1/3 The answer for it would be (in degree; it has periodic answer): x = 90 + 360*k or x = arcsin (-1/3) + 360*k (I cannot reverse sin 1/3 except using calculator, except your teacher allow it, I would leave it in this form)
@yassinezaoui45554 жыл бұрын
I'm not bprb obviously but I suggest that u can turn the expression into à quadratic equation in terms of sin(x) then use the quadratic formula to seek for solutions. Meaning: 2cos²(x)-sin²(x)-2sin(x)-1=0 2(1-sin²(x))-sin²(x)-2sin(x)-1=0 -3sin²(x)-2sin(x)-1=0 We may notice that a-b+c=0 so sin(x)=-1 or sin(x)=-c/a=-1/3 So x=-pi/2 + 2kpi or x=arcsin(-1/3) + 2kpi where k is an integer.
@danikhan51854 жыл бұрын
Wow thanks guys.This community is the best!
@KiNG_282_4 жыл бұрын
I don't know why I can't sleep without watching your videos 😍😍
@2false6374 жыл бұрын
Hey BPRP, do you know any good resources for analysis?
@blackpenredpen4 жыл бұрын
Dr. Peyam and Prof. Penn's channels : )
@DanDart7 ай бұрын
So it looks like a property of W is that W(xlnx) = lnx as well.
@copperfield424 жыл бұрын
so in general x^x^c=c --> x=c^(1/c) for all c>0 (as that is the domain of ln)
@behzat84894 жыл бұрын
yes it is working even you add more powers x^x^x^..x^c=c x=c^1/c
@angelmendez-rivera3514 жыл бұрын
Yes.
@ttchip8464 Жыл бұрын
The thing that kinda irks me tho is if you need to use the Lambert W function, you are likely using software like wolfram alpha anyway to solve it, which means why not just plug the original in wolfram alpha anyway since u need to use it either case
@tobyzxcd4 жыл бұрын
Nearly HALF A MILLION subs!!!!
@buler54414 жыл бұрын
W E C A N D O THE Follow yng 5:16
@prabhakarmishra90424 жыл бұрын
Really interesting... Is there any other methods of solving this question?
@frankk22314 жыл бұрын
Newton's method is quite fast 1.5 1.40 1.348 1.3371 1.33671
@andreimiga81014 жыл бұрын
Hey bprp! How do you integrate W(x)?
@angelmendez-rivera3514 жыл бұрын
To integrate W(x), you use a u-substitution. Let u = W(x). Hence x = ue^u, hence dx = (u + 1)e^u·du. Therefore, when you convert everything "to the u-world" and simplify the integrand, this becomes the antiderivative of u(u + 1)e^u with respect to u. Integrate this by parts by differentiating u(u + 1) to 2u + 1 and antidifferentiating e^u to e^u. This results in u(u + 1)e^u minus the antiderivative of (2u + 1)e^u. (2u + 1)e^u can itself be antidifferentiated by parts by differentiating 2u + 1 to 2 and antidifferentiating e^u to e^u, resulting in (2u + 1)e^u minus the antiderivative of 2e^u, which is just 2e^u. Therefore, the antiderivative of u(u + 1)e^u with respect to u is given by u(u + 1)e^u - (2u + 1)e^u + 2e^u. Notice that u = W(x) and x = ue^u. Therefore, u(u + 1)e^u - (2u + 1)e^u + 2e^u = [W(x) + 1]x - 2x - e^W(x) + 2e^W(x) = x[W(x) + 1] - 2x + e^W(x) = x[W(x) + 1] - 2x + x/W(x). With all the simplifications completed, don't forget to add your +C. Therefore, the antiderivative of W(x) is x[W(x) + 1] - 2x + x/W(x) + C.
@aspectator36804 жыл бұрын
Hello @blackpenredpen, whats about x^x^x=2 ?
@purpleontop21334 жыл бұрын
Love the chain chomp
@tasninnewaz67904 жыл бұрын
Please upload factorisation of cyclic expressions using factor theorem and How it works and What is the real life apllication of cyclic polynomial ?
@prateekmourya95674 жыл бұрын
I have really good question for you if alpha and beta are roots of equation x^2-x-1(Fibonacci equation) we define a function f(n)=alpha^n+beta^n then prove that f(n+1)=f(n)+f(n-1)
@volodymyrgandzhuk3614 жыл бұрын
What about super quadratic equations?
@angelmendez-rivera3514 жыл бұрын
It works more or less the same.
@Exachad4 жыл бұрын
Almost 500k!
@Mephisto7072 жыл бұрын
How do you know there are no negative solution? Also, Since Lambert W function is multivalued, can’t there be more positive real answers?
@daurenyermenov47664 жыл бұрын
Does it mean that exp(1/2*W(2ln2)) = sqrt(2)??
@blackpenredpen4 жыл бұрын
Yes
@angelmendez-rivera3514 жыл бұрын
Yes. You probably already see the pattern: exp(W[n·ln(n)]/n) = n^(1/n) for any positive integer n. This also implies that W(n·ln(n)) = ln(n) for any n. In fact, more generally, W[x·ln(x)] = ln(x) for any x satisfying the domain restrictions (and if you allow complex numbers, then for all nonzero complex x).
@manishkumartangri25214 жыл бұрын
Please make a video on ith derivative of x^i
@martinzone81534 жыл бұрын
What'the link for the chinese channel?
@mathematicalworld40634 жыл бұрын
didnt you also have a video for x^x^x^2017...... x=2017^1/2017
@denielalain57019 ай бұрын
Hello! I jumped to it the following way, and my solution got very peculiar compared to yours, and i could only wonder wether i made a mistake, or i could bring a product out from the Lambert W function. I got it like this: (x^x)^3=2 x^x=2^(1/3) x*lnx = ln(2^(1/3)) e^(lnx) *lnx = (1/3)*ln2 W(e^(lnx) *lnx) = W((1/3)*ln2) lnx = W((1/3)*ln2) x = e^W( (1/3)*ln2 ) instead of your x = e^( (1/3)*W(3 * ln2 ) ) Is it a coincidence, or have i made a mistake, or what is going on?
@zhendai4 жыл бұрын
Love the vids !!
@theultimateg.11094 жыл бұрын
If you look at the duration of the video, it says Hello next to it.
@moregirl45854 жыл бұрын
Is it allowed to still say x=e^(W(3ln3)/3)=e^(W(ln3 e^ln3)/3)=e^(ln3/3) in an exam where W is not taught?
@palmolive20054 жыл бұрын
what about x^x^y=y?
@JoseVieira-hs9qo9 ай бұрын
HI @blackpenredpen can you tell me how I get, using Lambert as you did, the negative value of the result in this case?: x^x^2=16, the result should be +/-2 or am I missunderstanding this?
@AllanPoeLover4 жыл бұрын
5:38 時 為什麼 3 = X^3 ? 這段是怎麼得來的 ?
@blackpenredpen4 жыл бұрын
反推 你從那先看的話 你會發現你可以一直把x^3放上去
@mathadventuress4 жыл бұрын
What course is this taught in? I haven't covered this
@angelmendez-rivera3514 жыл бұрын
Ideally, in a precalculus course.
@RogerGirardon11 ай бұрын
x^(x-1)=243 find x ?
@ericherde14 жыл бұрын
bprp has an exponential that you don’t know how to solve? It must be Lambert W!
@Yazoon_S4 жыл бұрын
This reminded me of the good ol’ school days EDIT: good thing that i still have the school notebook , so i can relook at the ln laws if (somehow) needed
@alfiangunawan59464 жыл бұрын
does that kind of equation always have 1 solution?
@thorstenbrandt8739 Жыл бұрын
What's the shark for...?
@andreemery49644 жыл бұрын
For the second, you can note that W(3 ln3) = W(e^ln 3 * ln 3) = ln 3 and e^(1/3 * ln 3) = 3^(1/3) edit: i got too far ahead of myself, and it turns out he had this in the end of the video
@funnyyoushouldsaytha4 жыл бұрын
Man this was a great video
@egillandersson17804 жыл бұрын
Very nice video !!!
@MrRyanroberson14 жыл бұрын
there are two more solutions as well for the right side: (-1)^(2/3) and (-1)^(4/3) times the cuberoot of 3
@Shreyas_Jaiswal2 жыл бұрын
But you need the solutions to be in real world.
@MrRyanroberson12 жыл бұрын
@@Shreyas_Jaiswal they are in real world, they just happen to not fit in the set of real numbers.
@Shreyas_Jaiswal2 жыл бұрын
@@MrRyanroberson1 real world means on earth. But complex numbers are on moon. 😂😂
@supersaiyan24 жыл бұрын
Can you solve for x: x^(x/(1-x))=1
@mamadou30764 жыл бұрын
Beautiful What is the brand of your pen please ? 😅
@ayushgangrade24434 жыл бұрын
Simply comparing x^3=1 Taking cube roots of unity W, w^2,1 and further simplification
@nuklearboysymbiote4 жыл бұрын
三分之一 3 parts take 1 haha! This feels like watching a translated version lol
@curiousaboutphysics86054 жыл бұрын
An Easy peasy question for you- Find the sum of series: sin x+3sin 3x+5sin5x +...... +(2k-1) sin(2k-1) x. (Using calculus)
@vari15354 жыл бұрын
He said "one-third" correctly and then corrected himself..
@blackpenredpen4 жыл бұрын
Eh, when?
@vari15354 жыл бұрын
@@blackpenredpen 3:13 and 4:20
@michaelroditis19524 жыл бұрын
@@vari1535 He wrote the denominator first. I find it adorable that he corrected himself for that!
@vari15354 жыл бұрын
@@michaelroditis1952 Ohh, I thought it was what he _said_ lol
@R2242V3 жыл бұрын
I tried to derivate it all the way but then x^x^3 = 1 not 3. Can it be solved without that "W" thing?
@OriginalSuschi4 жыл бұрын
We can prove something with these solutions: e^(W(3ln(3))/3)=3^(1/3) W(3ln(3))/3=ln(3)/3 W(3ln(3))=ln(3) Like already said in the video we can plug in any number threre, so we have something really interesting: W(x(ln(x))=ln(x) Yeah but this makes totally sense since we can do x=e*ln(x), so we get W(ln(x)*e^ln(x)=ln(x)... Didn't watch your video till the end hahaha
@isaacgai33014 жыл бұрын
you are from hong kong or mainland?
@apfelsamenn4 жыл бұрын
Hey is your Chinese channel 黑比红比 abandoned? There's no video.
@blackpenredpen4 жыл бұрын
I don't use that anymore. But here kzbin.info/door/rONDbyO94HIrJyfhS6qfjA
@apfelsamenn4 жыл бұрын
blackpenredpen gr8! just followed😁
@blackpenredpen4 жыл бұрын
Thanks! How did u know that channel btw? It’s been so long lol.
@apfelsamenn4 жыл бұрын
blackpenredpen Google'd "blackpenredpen Chinese" and found this m.kzbin.info/www/bejne/bpuZYmSlnql2pas
@navaneethnani14814 жыл бұрын
I am great fan you sir! You are my cool! 😎 Maths teacher 💯
@sthinvc4 жыл бұрын
Can I have the link for your Chinese channel as I am from Hong Kong in which Chinese will be more familiar with me.
@matron99364 жыл бұрын
Just use the super root, after letting u=x^3. (tetration)
@coronaman3654 жыл бұрын
What's it???
@lilichavez47704 жыл бұрын
Can you do a video for Kids?
@Oskar-zt9dc4 жыл бұрын
but what are the complex solutions
@angelmendez-rivera3514 жыл бұрын
The complex solutions are given by the complex branches of the logaritm and the W map respectively.
@educaticher4 жыл бұрын
In the first case I got a different solution. Is it right? x^x^3 = 2 x^x = 2^(1/3) xLn(x) = Ln(2^(1/3)) Ln(x)e^(Ln(x)) = Ln(2^(1/3)) Ln(x) = W(Ln(2^(1/3))) x = e^(W(Ln(2^(1/3)))) x = 1.210334...