Fermi-Dirac Integral Explained

  Рет қаралды 19,688

Jordan Louis Edmunds

Jordan Louis Edmunds

Күн бұрын

Пікірлер: 13
@musik140698
@musik140698 4 жыл бұрын
You really save me! I was making a course about semiconductors and i had a lot of pain solving a problem. With your video i learn how to solve it! Thanks!
@_ch1pset
@_ch1pset 8 ай бұрын
I was having shower memories of my lack of understanding I had in college over semiconductors, and this was really great.
@ElectronicsByVartul
@ElectronicsByVartul 4 жыл бұрын
Hi, I think at 6:00, it should be exp(ita + (Ec - Ef)). Plz correct me if I am wrong.
@林士翔-y8u
@林士翔-y8u 4 жыл бұрын
I also think so..
@srijanisallyouneed
@srijanisallyouneed 2 жыл бұрын
2:42 😢 how the *4π/h^3 (2 m**) 2/3 factor came ??? At the first of eqn 🙏🏻 Please explain
@chenzhang5248
@chenzhang5248 4 жыл бұрын
You made tedious knowledge interesting. Bravo!
@sudoLife
@sudoLife 3 жыл бұрын
How did the exponential term acquire the plus sign? it was minus in the beginning.
@JordanEdmundsEECS
@JordanEdmundsEECS 3 жыл бұрын
Hmmm, I'm not sure. Usually that happens when you divide by the negative exponential. If you write out the whole thing and you think it should have a negative sign at the end send it to me and I'll add a pinned comment.
@wilurbean
@wilurbean Жыл бұрын
I really wanted to find how I can get Efn or Efp from a given temp and concentration This is basically the opposite
@liadsagi3
@liadsagi3 5 жыл бұрын
Why not calculate e^(n-n_f) as e^((E-E_f)/KT) ? (n stands for eta)
@JordanEdmundsEECS
@JordanEdmundsEECS 5 жыл бұрын
You could very well do that, it’s just a little more difficult because you would actually have to carry out the integral yourself and be careful with the units (the benefit of putting it in this unit less form is that other people have already calculated its value).
@liadsagi3
@liadsagi3 5 жыл бұрын
@@JordanEdmundsEECS thanks!
@jozafsalmi123
@jozafsalmi123 Жыл бұрын
شكرا
Bloch's Theorem in Crystals
13:01
Jordan Louis Edmunds
Рет қаралды 76 М.
Fermi Function Derivation
9:52
Jordan Louis Edmunds
Рет қаралды 55 М.
人是不能做到吗?#火影忍者 #家人  #佐助
00:20
火影忍者一家
Рет қаралды 20 МЛН
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН
Quasi-Fermi Levels Explained
7:38
Jordan Louis Edmunds
Рет қаралды 54 М.
Charge Carrier Concentration of Doped Semiconductors
12:28
Jordan Louis Edmunds
Рет қаралды 48 М.
Fermi Function Explained
12:07
Jordan Louis Edmunds
Рет қаралды 163 М.
The Gaussian Integral is DESTROYED by Feynman’s Technique
24:05
Jago Alexander
Рет қаралды 85 М.
Finding the Electron Concentration in a Semiconductor
11:32
Jordan Louis Edmunds
Рет қаралды 58 М.
Electronic Devices: Fermi Dirac distribution
8:01
techgurukula
Рет қаралды 201 М.