I passed my test thanks to your 100 series video. Thank you, sensei.
@blackpenredpen5 жыл бұрын
Meltoss You must also put in a good amount of work to study!! So great job to you as well!!
@MrRyanroberson15 жыл бұрын
the implicit formula also allows you to generalize to all indexes, a_0 = 2, a_-1 = -1/2. The recursive formula agrees: a_0 = (-4-1)/(-9/2+2) = -10/(-9+4) = 10/5 = 2. a_1 = 15/20 = 3/4
@ffggddss5 жыл бұрын
Nice! BTW, I did the recursive formula slightly differently, just because it was the first thing that occurred to me. In order to get a whole number I could pull out of the fraction, I went: 3a[n] = (3n+6)/(3n+1) = 1 + 5/(3n+1) Then pick that apart one operation at a time, to this level: 3a[n] - 1 = 5/(3n+1) 5/(3a[n] - 1) = 3n + 1 Then subs. n+1 for n in the first line, and use what we just found: 3a[n+1] = 1 + 5/(3(n+1) + 1) = 1 + 5/(3n+1 + 3) = 1 + 5/([5/(3a[n] - 1)] + 3) Multiply top & bottom of the "big" fraction by (3a[n] - 1): ... = 1 + (15a[n] - 5)/(5 + 9a[n] - 3) = 1 + (15a[n] - 5)/(9a[n] + 2) = (24a[n] - 3)/(9a[n] + 2) Finally, divide by 3: a[n+1] = (8a[n] - 1)/(9a[n] + 2) Essentially the same; just different turns onto different roads, to wind up at the same hotel. ;-) Fred
@blackpenredpen5 жыл бұрын
Ah I see!! Now my challenge is to go from recursive to explicit.
@elvinsamedov5475 жыл бұрын
*1) You love Mathematics.* *2) We love BlackPenRedPen.* *We deduce,* *3) We love Mathematics💓* *I want a 💜, from BlackPenRedPen 😇😇😇Greetings from Turkey 🇹🇷🙏*
@arynbhar5 жыл бұрын
```WE LOVE MATHEMATICS```
@OtiumAbscondita5 жыл бұрын
@@arynbhar *COMMUNISM INTENSIFIES*
@elvinsamedov5475 жыл бұрын
Where is my 💗 😟
@gustavoalexanderma85875 жыл бұрын
@@elvinsamedov547 ❤
@OtiumAbscondita5 жыл бұрын
@@elvinsamedov547 nowhere
@cameronspalding97925 жыл бұрын
I’ve just realised: if we have a recursive relationship in the form a_n = f(a_n-1), f differential at L where L is a limit for a_n and |a_n-L| is of order 1/n^m where m>0 then |f’(L)|=1
@duggydo5 жыл бұрын
This is so cool! This is something we never covered in calculus classes. I feel like the teachers must have skipped over it.
@virendrasule32586 ай бұрын
6:42 but how does this method work if the recurrence of the sequence is not first order and also when an explicit expression for a_n is not available?
@junba18102 ай бұрын
Finding the limit doesn't require you to know the explicit formula. So you don't need it at all.
@matheussales48615 жыл бұрын
If I have the recursive formula A(n)=sqrt(A(n-1)+1), with A0=1, how do I deduce it's explicit form? Fun fact, the limit of this sequence when n goes to infinit is the golden ratio ^-^.
@angelmendez-rivera3515 жыл бұрын
Matheus Sales I may be wrong, but I believe you cannot deduce the explicit form using elementary functions, or even standard special functions.
@archithtelukunta45995 жыл бұрын
Matheus Sales A(n) = sqrt[1+sqrt[1+sqrt[1+...........sqrt [1+sqrt(2)]]]] .There would be (n-1) “sqrt”s
@angelmendez-rivera3515 жыл бұрын
GaMeR 123 Correct, but this would not be expressible using elementary functions.
@enricodibenedetto69595 жыл бұрын
You don't have to deduce the explicit form to calculate this limit. Firstly, notice that your succession, as it's defined, is increasing (you can prove it with induction or you can simply notice that because the function sqrt(x+1) is an increasing one and a1=sqrt(2)>a0=1 so it follows that an is constantly increasing). Now, for a theorem on monotone succession, if the succession is bounded it converges, if it's not it diverges. In this case, you can prove by induction that 2 is bigger of all the terms of the succession. Now, finally, you can say that an converges to one of the solution of the fixed point equation x=sqrt(x+1). Solving it you obtain two solution a positive one and a negative one. Obviously, you have to pick the positive one and it happens to be the golden ratio. Hope to be useful. Have a good night :)
@archithtelukunta45995 жыл бұрын
Angel Mendez-Rivera Induction FTW!:)
@andresxj15 жыл бұрын
So, for recursive formula, if the sequence converges, the limit doesn't depend on the initial value?
@blackpenredpen5 жыл бұрын
Andy Arteaga It depends! Sometimes you will get two answers (more maybe more) when you do what I did in the video. You may need to use the initial condition to determine which L it is!
@ambigramm5 жыл бұрын
You need to learn about the mandelbrot aNd julie set. This fractal is Based around the Initial value for recursive formulars
@juniormontalvan40625 жыл бұрын
You deserve more subscribers man.
@NoNameAtAll25 жыл бұрын
He will converge to more subs
5 жыл бұрын
his subscribers will diverge
@blackpenredpen5 жыл бұрын
Thank you!!
@Qoow8e1deDgikQ9m3ZG5 жыл бұрын
why don't use a_n - a_n-1 or a_n / a_n-1 to get the recursive function?
@mrandersonpw535 жыл бұрын
What if, proving properly the sequence if bounded and monotone of course, the cuadratic formula gives us 2 positive solutions bounded by our sup of inf. Which one Should I choose? The closest one to the bound? Is there a bifurcation?
@adam_salha5 жыл бұрын
Hey! I love your videos, you inspired me to study mathematics in college! I recently had an idea, if we have two fixed points A and B, and wanna see where C is such that angle ACB = 90° we can simply draw the circle of diameter [AB]. But what if the angle was different than 90°, how would the shape behave? If it's 30° for example or 45°!
@scarbotheblacksheep95205 жыл бұрын
Circle around the plus? That's news to me.
@blackpenredpen5 жыл бұрын
check out Ford circle, by Numberphile. They have a nice video on it.
@pierreabbat61575 жыл бұрын
To check the recursive formula: a=2; (8a-1)/(9a+2)=15/20=3/4. a=5/10=1/2; (8a-1)/(9a+2)=3/6.5=6/13.
@beegdigit98115 жыл бұрын
2:51 What does he mean by putting a circle around the plus?
@keescanalfp51435 жыл бұрын
it's what bprp says to it. never permitted to assume that for instance 1 2 3 - + - gets - . it's always a false step. 2 3 5 **
@darkforcekiller5 жыл бұрын
Shouldnt the explicit formula be n+3 / 3n+4 since the first index is always 0 ( a0)
@blackpenredpen5 жыл бұрын
Suk Mike Hawk it depends on the convention.
@flowerwithamachinegun26925 жыл бұрын
Suk Mike Hawk in the example above the sequence started with a_1. A sequence doesn't always have to start with a_0.
@ranadeepkundu53575 жыл бұрын
Some authors consider 0 as a natural number, some don't.
@benjamimapancake64295 жыл бұрын
I read in a book that 0 is a natural number, but whole numbers start at 1.
@duckymomo79355 жыл бұрын
Can’t you use Cauchy sequence Or maybe monotone convergence
@sergioh55155 жыл бұрын
When you solve for L, isnt that coincidentally like solving for the auxiliary equation? And cool video btw as always! Very fun of course:D
@josephhajj15705 жыл бұрын
Your subscribers will diverge mr Blackpenredpen
@Archik45 жыл бұрын
a0=2 recursive work for n=1 and give 3/4
@damianmatma7085 жыл бұрын
Thank you for this great video :) I have a question related to your example: Suppose we have given the recursive formula: a.1 = 3/4 a.n = (8 * a_n-1 - 1) / (9 * a_n-1 + 2) Now I want to get the explicit formula (we know we should get a.n = (n+2)/(3n+1) ). Is it possible? If so, how to do that step-by-step? It would be great if you could make another video (as Part 2 or as a continuation) with my problem solved.
@blackpenredpen5 жыл бұрын
I actually plan to make such videos in the spring. It's usually *not* easy to go from rec. to exp. For this one, I would suggest to just write out the first few terms, then look for a pattern for it. That's how I would go about it.
@damianmatma7085 жыл бұрын
@@blackpenredpen Thank you very much :)
@josephhajj15705 жыл бұрын
But how can we prove it bounded (given recursive) by induction???
@angelmendez-rivera3515 жыл бұрын
Joseph Hajj a(1) = 3/4 < 1. Now, suppose that a(n) < 1 Then a(n + 1) = (8a(n) - 1)/(9a(n) + 2) < 1 for all a(n), since, if we let m = a(n), then 8m - 1 = 9m + 2 implies -3 = m, which means that for -3 < m < 1, 9m + 2 > 8m - 1. Therefore, a(n) < 1 for all n.
@mikeschieffer26445 жыл бұрын
Nice video! Could you also show that asub(n-1) converges to 1/3 as n goes to infinity by using the intermediate equation you have of asub(n-1) = (n+1)/(3n-2)? Thanks for all you do!
@angelmendez-rivera3515 жыл бұрын
Mike Schieffer Yes. Remember that a(n - 1) is just a(n) shifted by 1. Limits of sequences are shift invariant.
@kalunlee58545 жыл бұрын
but how can we find the explicit formula from the first term and the recursive formula?
@prasaddash51395 жыл бұрын
It's awesome in itself
@SR-kd4wi5 жыл бұрын
Are there cases where recursion is simpler than explicit method?
@sensei97675 жыл бұрын
In most cases the recursive formular is easier to derive than the explicit one. In those cases, calculating the limit this way might be easier than finding the explicit formular.
@angelmendez-rivera3515 жыл бұрын
Autologist Z Yes. In the vast majority of situations, one cannot express the solution of a recursive formula using elementary or known functions, in which case there is no explicit formula to begin with.
@jhonatanandres41485 жыл бұрын
Excelent video, do you have any video about conical sections? (Special Problems, from graphic to general formula, the opposite...?)
@angelmendez-rivera3515 жыл бұрын
Jhonatan Andres Try checking the channel
@jhonatanandres41485 жыл бұрын
I think i found it
@khbye24115 жыл бұрын
"When n->inf, a_n goes to L. So, a_(n-1) also goes to L." I never really learnt about limits. But could anyone tell me why the a_(n-1) also goes to L? I don't understand why?
@khbye24115 жыл бұрын
I was wondering if a_(n-1) can tend to L, then what about a_(n-2) (third last term before the 'last' ??infinite?? term)? Could a_(n-2) also go to L?...then i thought why not generalise it to a_(n-k) to cover all the possible terms (4th last term, 5th last term...). So, I rewrote a_n in terms of a_(n-k) instead and assumed that a_(n-k) also tends to L and solved for a quadratic equation in L....and I got a repeated root where L=1/3. Like is there a reason why there's only one root? How did I even end up with L/3L from all this random stuff hahaha. Is this enough to prove that a_(n-1) will converge to L?
@saharhaimyaccov49775 жыл бұрын
How we yse integral to cos (tanX)
@НиколайШерстюк-ы7е4 жыл бұрын
Turn on captions
@jomama34655 жыл бұрын
Hoping to see an analytic geometry vid on your channel :))
@nestorv76275 жыл бұрын
How would you use this method to prove the ratio between 2 consecutive fibonacci numbers?
@BigDBrian5 жыл бұрын
f(n) = f(n-1) + f(n-2) f(n)/f(n-1) = [ f(n-1) + f(n-2) ] / f(n-1) f(n)/f(n-1) = 1 + f(n-2) / f(n-1) note that f(n-2)/f(n-1) is the multiplicative inverse of f(n-1)/f(n-2). taking the limit as n->inf and assuming convergence, we can say that f(n)/f(n-1) = f(n-1)/f(n-2) = L substituting the earlier equation gives L = 1 + 1/L solving this familiar equation gives phi as the positive solution.
Also, F(n + 1) = F(n) + F(n - 1). Divide by F(n) to get F(n + 1)/F(n) = 1 + F(n - 1)/F(n). Now let lim F(n + 1)/F(n) = L, so L = 1 + lim F(n - 1)/F(n) = 1 + lim F(n)/F(n + 1) = 1 + 1/L, so L = 1 + 1/L. Solve for L, and the positive solution is L = φ.
@mohittiwari89345 жыл бұрын
Looking so smart bro 😍
@VoteScientist5 жыл бұрын
6:14 the suspense was killing me.
@rezamiau5 жыл бұрын
Great!!! thank you.
@VaradMahashabde5 жыл бұрын
How to get the explicit formula from the recursive? 😕😕
@jayapandey25415 жыл бұрын
Black Pen Red Pen, Yay!
@someperson1885 жыл бұрын
Given the first five terms of a sequence doesn't determine the formula for the sequence. There are infinitely many formulas for the sequence given and the limit can be anything (including +-infinity) or the sequence can have no limit. Here are some examples. (1) Let A be any real and a_n = (n+2)/(3n+1) + (A-1/3)(n-1)(n-2)(n-3)(n-4)(n-5)/n^5. Then a_1 = 3/4, a_2 = 4/7, a_3 = 5/10, a_4 = 6/13, a_5 = 7/16, and the limit of a_n as n approaches infinity is A. (2) Let a_n = (n+2)/(3n+1) +B(n-1)(n-2)(n-3)(n-4)(n-5), where B = 1 or B = -1. Then a_1 = 3/4,. . . , a_5 = 7/16, and the limit of a_n as n approaches infinity is infinity (resp., -infinity) if B =1 (resp., -1). (3) Let a_n = (n+2)/(3n+1) + ((-1)^n)(n-1)(n-2)(n-3)(n-4)(n-5)/n^5. Then a_1 = 3/4,. . . ,a_5 = 7/16, and the limit of a_n as n approaches infinity doesn't exist. Blackpenredpen is assuming that the formula for a_n is (in some sense) simplest, which I agree is the quotient of two linear functions.
@Qoow8e1deDgikQ9m3ZG5 жыл бұрын
you missed something , he assume limit exists ....... don't be stupid..... and all theory tends to use the simplest trial solution, no one interested in your solution .... why not extend your stupid solution to complex number too .... stupid ....
@someperson1885 жыл бұрын
@@Qoow8e1deDgikQ9m3ZG I'm replying to you in a civil manner because, unlike you, I am attempting (with great difficulty) to be civil. You obviously missed (or didn't understand) the last sentence of my comment (i.e., What does "simplest" mean? It's not easy or perhaps possible to answer, is it?). Further, in example (1) (resp., (2)), I construct a formula a_n, such that a_1, a_2 ,..., a_5 take the given values and the limit is an arbitrary real number A (resp., infinity). So assuming the limit exists doesn't help your case. My objection isn't new; it's well-known to mathematicians, but clearly not to you. I regret that my anger is showing. I won't answer any further comments from you if your comment is again impolite.
@cristiancojocaru75465 жыл бұрын
You are so cool !
@BigDBrian5 жыл бұрын
explicit formula: fuck recursive formula: recursive formula
@muhammetislambedirbeyoglu31355 жыл бұрын
Just waow 👏👏👏
@sheikhmansur34025 жыл бұрын
As always ᵗʰⁱˢ ʷᵃˢ ᵖʳᵉᵗᵗʸ ᶜᵒᵒˡ 👍👍👍
@seroujghazarian63433 жыл бұрын
3/4+4/7+5/10+6/13+... diverges 😋
@supriyajyoti225 жыл бұрын
IIT PE VIDEO'S
@maginobionrequiem91675 жыл бұрын
Cool
@bhuvird1785 жыл бұрын
This video u do well. Do something better in maths. U can create new formula my dear just do my dear
@blackpenredpen5 жыл бұрын
Bhuvi Rd We have a new formula called the Steve-Peyam theorem! But this comment section is too small so I cannot share it with you.
@bhuvird1785 жыл бұрын
U proved the formula
@blackpenredpen5 жыл бұрын
Bhuvi Rd Yea. Do you have your own formula too?
@bhuvird1785 жыл бұрын
Yes I have RD formula that is the formula in calculus but I don't prove that formula