finding a recursive formula and its limit

  Рет қаралды 19,667

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 101
@meltossmedia
@meltossmedia 5 жыл бұрын
I passed my test thanks to your 100 series video. Thank you, sensei.
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Meltoss You must also put in a good amount of work to study!! So great job to you as well!!
@MrRyanroberson1
@MrRyanroberson1 5 жыл бұрын
the implicit formula also allows you to generalize to all indexes, a_0 = 2, a_-1 = -1/2. The recursive formula agrees: a_0 = (-4-1)/(-9/2+2) = -10/(-9+4) = 10/5 = 2. a_1 = 15/20 = 3/4
@ffggddss
@ffggddss 5 жыл бұрын
Nice! BTW, I did the recursive formula slightly differently, just because it was the first thing that occurred to me. In order to get a whole number I could pull out of the fraction, I went: 3a[n] = (3n+6)/(3n+1) = 1 + 5/(3n+1) Then pick that apart one operation at a time, to this level: 3a[n] - 1 = 5/(3n+1) 5/(3a[n] - 1) = 3n + 1 Then subs. n+1 for n in the first line, and use what we just found: 3a[n+1] = 1 + 5/(3(n+1) + 1) = 1 + 5/(3n+1 + 3) = 1 + 5/([5/(3a[n] - 1)] + 3) Multiply top & bottom of the "big" fraction by (3a[n] - 1): ... = 1 + (15a[n] - 5)/(5 + 9a[n] - 3) = 1 + (15a[n] - 5)/(9a[n] + 2) = (24a[n] - 3)/(9a[n] + 2) Finally, divide by 3: a[n+1] = (8a[n] - 1)/(9a[n] + 2) Essentially the same; just different turns onto different roads, to wind up at the same hotel. ;-) Fred
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Ah I see!! Now my challenge is to go from recursive to explicit.
@elvinsamedov547
@elvinsamedov547 5 жыл бұрын
*1) You love Mathematics.* *2) We love BlackPenRedPen.* *We deduce,* *3) We love Mathematics💓* *I want a 💜, from BlackPenRedPen 😇😇😇Greetings from Turkey 🇹🇷🙏*
@arynbhar
@arynbhar 5 жыл бұрын
```WE LOVE MATHEMATICS```
@OtiumAbscondita
@OtiumAbscondita 5 жыл бұрын
@@arynbhar *COMMUNISM INTENSIFIES*
@elvinsamedov547
@elvinsamedov547 5 жыл бұрын
Where is my 💗 😟
@gustavoalexanderma8587
@gustavoalexanderma8587 5 жыл бұрын
@@elvinsamedov547 ❤
@OtiumAbscondita
@OtiumAbscondita 5 жыл бұрын
@@elvinsamedov547 nowhere
@cameronspalding9792
@cameronspalding9792 5 жыл бұрын
I’ve just realised: if we have a recursive relationship in the form a_n = f(a_n-1), f differential at L where L is a limit for a_n and |a_n-L| is of order 1/n^m where m>0 then |f’(L)|=1
@duggydo
@duggydo 5 жыл бұрын
This is so cool! This is something we never covered in calculus classes. I feel like the teachers must have skipped over it.
@virendrasule3258
@virendrasule3258 6 ай бұрын
6:42 but how does this method work if the recurrence of the sequence is not first order and also when an explicit expression for a_n is not available?
@junba1810
@junba1810 2 ай бұрын
Finding the limit doesn't require you to know the explicit formula. So you don't need it at all.
@matheussales4861
@matheussales4861 5 жыл бұрын
If I have the recursive formula A(n)=sqrt(A(n-1)+1), with A0=1, how do I deduce it's explicit form? Fun fact, the limit of this sequence when n goes to infinit is the golden ratio ^-^.
@angelmendez-rivera351
@angelmendez-rivera351 5 жыл бұрын
Matheus Sales I may be wrong, but I believe you cannot deduce the explicit form using elementary functions, or even standard special functions.
@archithtelukunta4599
@archithtelukunta4599 5 жыл бұрын
Matheus Sales A(n) = sqrt[1+sqrt[1+sqrt[1+...........sqrt [1+sqrt(2)]]]] .There would be (n-1) “sqrt”s
@angelmendez-rivera351
@angelmendez-rivera351 5 жыл бұрын
GaMeR 123 Correct, but this would not be expressible using elementary functions.
@enricodibenedetto6959
@enricodibenedetto6959 5 жыл бұрын
You don't have to deduce the explicit form to calculate this limit. Firstly, notice that your succession, as it's defined, is increasing (you can prove it with induction or you can simply notice that because the function sqrt(x+1) is an increasing one and a1=sqrt(2)>a0=1 so it follows that an is constantly increasing). Now, for a theorem on monotone succession, if the succession is bounded it converges, if it's not it diverges. In this case, you can prove by induction that 2 is bigger of all the terms of the succession. Now, finally, you can say that an converges to one of the solution of the fixed point equation x=sqrt(x+1). Solving it you obtain two solution a positive one and a negative one. Obviously, you have to pick the positive one and it happens to be the golden ratio. Hope to be useful. Have a good night :)
@archithtelukunta4599
@archithtelukunta4599 5 жыл бұрын
Angel Mendez-Rivera Induction FTW!:)
@andresxj1
@andresxj1 5 жыл бұрын
So, for recursive formula, if the sequence converges, the limit doesn't depend on the initial value?
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Andy Arteaga It depends! Sometimes you will get two answers (more maybe more) when you do what I did in the video. You may need to use the initial condition to determine which L it is!
@ambigramm
@ambigramm 5 жыл бұрын
You need to learn about the mandelbrot aNd julie set. This fractal is Based around the Initial value for recursive formulars
@juniormontalvan4062
@juniormontalvan4062 5 жыл бұрын
You deserve more subscribers man.
@NoNameAtAll2
@NoNameAtAll2 5 жыл бұрын
He will converge to more subs
5 жыл бұрын
his subscribers will diverge
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Thank you!!
@Qoow8e1deDgikQ9m3ZG
@Qoow8e1deDgikQ9m3ZG 5 жыл бұрын
why don't use a_n - a_n-1 or a_n / a_n-1 to get the recursive function?
@mrandersonpw53
@mrandersonpw53 5 жыл бұрын
What if, proving properly the sequence if bounded and monotone of course, the cuadratic formula gives us 2 positive solutions bounded by our sup of inf. Which one Should I choose? The closest one to the bound? Is there a bifurcation?
@adam_salha
@adam_salha 5 жыл бұрын
Hey! I love your videos, you inspired me to study mathematics in college! I recently had an idea, if we have two fixed points A and B, and wanna see where C is such that angle ACB = 90° we can simply draw the circle of diameter [AB]. But what if the angle was different than 90°, how would the shape behave? If it's 30° for example or 45°!
@scarbotheblacksheep9520
@scarbotheblacksheep9520 5 жыл бұрын
Circle around the plus? That's news to me.
@blackpenredpen
@blackpenredpen 5 жыл бұрын
check out Ford circle, by Numberphile. They have a nice video on it.
@pierreabbat6157
@pierreabbat6157 5 жыл бұрын
To check the recursive formula: a=2; (8a-1)/(9a+2)=15/20=3/4. a=5/10=1/2; (8a-1)/(9a+2)=3/6.5=6/13.
@beegdigit9811
@beegdigit9811 5 жыл бұрын
2:51 What does he mean by putting a circle around the plus?
@keescanalfp5143
@keescanalfp5143 5 жыл бұрын
it's what bprp says to it. never permitted to assume that for instance 1 2 3 - + - gets - . it's always a false step. 2 3 5 **
@darkforcekiller
@darkforcekiller 5 жыл бұрын
Shouldnt the explicit formula be n+3 / 3n+4 since the first index is always 0 ( a0)
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Suk Mike Hawk it depends on the convention.
@flowerwithamachinegun2692
@flowerwithamachinegun2692 5 жыл бұрын
Suk Mike Hawk in the example above the sequence started with a_1. A sequence doesn't always have to start with a_0.
@ranadeepkundu5357
@ranadeepkundu5357 5 жыл бұрын
Some authors consider 0 as a natural number, some don't.
@benjamimapancake6429
@benjamimapancake6429 5 жыл бұрын
I read in a book that 0 is a natural number, but whole numbers start at 1.
@duckymomo7935
@duckymomo7935 5 жыл бұрын
Can’t you use Cauchy sequence Or maybe monotone convergence
@sergioh5515
@sergioh5515 5 жыл бұрын
When you solve for L, isnt that coincidentally like solving for the auxiliary equation? And cool video btw as always! Very fun of course:D
@josephhajj1570
@josephhajj1570 5 жыл бұрын
Your subscribers will diverge mr Blackpenredpen
@Archik4
@Archik4 5 жыл бұрын
a0=2 recursive work for n=1 and give 3/4
@damianmatma708
@damianmatma708 5 жыл бұрын
Thank you for this great video :) I have a question related to your example: Suppose we have given the recursive formula: a.1 = 3/4 a.n = (8 * a_n-1 - 1) / (9 * a_n-1 + 2) Now I want to get the explicit formula (we know we should get a.n = (n+2)/(3n+1) ). Is it possible? If so, how to do that step-by-step? It would be great if you could make another video (as Part 2 or as a continuation) with my problem solved.
@blackpenredpen
@blackpenredpen 5 жыл бұрын
I actually plan to make such videos in the spring. It's usually *not* easy to go from rec. to exp. For this one, I would suggest to just write out the first few terms, then look for a pattern for it. That's how I would go about it.
@damianmatma708
@damianmatma708 5 жыл бұрын
@@blackpenredpen Thank you very much :)
@josephhajj1570
@josephhajj1570 5 жыл бұрын
But how can we prove it bounded (given recursive) by induction???
@angelmendez-rivera351
@angelmendez-rivera351 5 жыл бұрын
Joseph Hajj a(1) = 3/4 < 1. Now, suppose that a(n) < 1 Then a(n + 1) = (8a(n) - 1)/(9a(n) + 2) < 1 for all a(n), since, if we let m = a(n), then 8m - 1 = 9m + 2 implies -3 = m, which means that for -3 < m < 1, 9m + 2 > 8m - 1. Therefore, a(n) < 1 for all n.
@mikeschieffer2644
@mikeschieffer2644 5 жыл бұрын
Nice video! Could you also show that asub(n-1) converges to 1/3 as n goes to infinity by using the intermediate equation you have of asub(n-1) = (n+1)/(3n-2)? Thanks for all you do!
@angelmendez-rivera351
@angelmendez-rivera351 5 жыл бұрын
Mike Schieffer Yes. Remember that a(n - 1) is just a(n) shifted by 1. Limits of sequences are shift invariant.
@kalunlee5854
@kalunlee5854 5 жыл бұрын
but how can we find the explicit formula from the first term and the recursive formula?
@prasaddash5139
@prasaddash5139 5 жыл бұрын
It's awesome in itself
@SR-kd4wi
@SR-kd4wi 5 жыл бұрын
Are there cases where recursion is simpler than explicit method?
@sensei9767
@sensei9767 5 жыл бұрын
In most cases the recursive formular is easier to derive than the explicit one. In those cases, calculating the limit this way might be easier than finding the explicit formular.
@angelmendez-rivera351
@angelmendez-rivera351 5 жыл бұрын
Autologist Z Yes. In the vast majority of situations, one cannot express the solution of a recursive formula using elementary or known functions, in which case there is no explicit formula to begin with.
@jhonatanandres4148
@jhonatanandres4148 5 жыл бұрын
Excelent video, do you have any video about conical sections? (Special Problems, from graphic to general formula, the opposite...?)
@angelmendez-rivera351
@angelmendez-rivera351 5 жыл бұрын
Jhonatan Andres Try checking the channel
@jhonatanandres4148
@jhonatanandres4148 5 жыл бұрын
I think i found it
@khbye2411
@khbye2411 5 жыл бұрын
"When n->inf, a_n goes to L. So, a_(n-1) also goes to L." I never really learnt about limits. But could anyone tell me why the a_(n-1) also goes to L? I don't understand why?
@khbye2411
@khbye2411 5 жыл бұрын
I was wondering if a_(n-1) can tend to L, then what about a_(n-2) (third last term before the 'last' ??infinite?? term)? Could a_(n-2) also go to L?...then i thought why not generalise it to a_(n-k) to cover all the possible terms (4th last term, 5th last term...). So, I rewrote a_n in terms of a_(n-k) instead and assumed that a_(n-k) also tends to L and solved for a quadratic equation in L....and I got a repeated root where L=1/3. Like is there a reason why there's only one root? How did I even end up with L/3L from all this random stuff hahaha. Is this enough to prove that a_(n-1) will converge to L?
@saharhaimyaccov4977
@saharhaimyaccov4977 5 жыл бұрын
How we yse integral to cos (tanX)
@НиколайШерстюк-ы7е
@НиколайШерстюк-ы7е 4 жыл бұрын
Turn on captions
@jomama3465
@jomama3465 5 жыл бұрын
Hoping to see an analytic geometry vid on your channel :))
@nestorv7627
@nestorv7627 5 жыл бұрын
How would you use this method to prove the ratio between 2 consecutive fibonacci numbers?
@BigDBrian
@BigDBrian 5 жыл бұрын
f(n) = f(n-1) + f(n-2) f(n)/f(n-1) = [ f(n-1) + f(n-2) ] / f(n-1) f(n)/f(n-1) = 1 + f(n-2) / f(n-1) note that f(n-2)/f(n-1) is the multiplicative inverse of f(n-1)/f(n-2). taking the limit as n->inf and assuming convergence, we can say that f(n)/f(n-1) = f(n-1)/f(n-2) = L substituting the earlier equation gives L = 1 + 1/L solving this familiar equation gives phi as the positive solution.
@angelmendez-rivera351
@angelmendez-rivera351 5 жыл бұрын
N S F(n) = Aφ^n + B(-φ)^(-n), so F(n + 1)/F(n) = [Aφ^(n + 1) + B(-φ)^(-n - 1)]/[Aφ^n + B(-φ)^(-n - 1)]. Now, lim F(n + 1)/F(n) = lim Aφ*φ^n/[Aφ^n] = lim φ = φ.
@angelmendez-rivera351
@angelmendez-rivera351 5 жыл бұрын
Also, F(n + 1) = F(n) + F(n - 1). Divide by F(n) to get F(n + 1)/F(n) = 1 + F(n - 1)/F(n). Now let lim F(n + 1)/F(n) = L, so L = 1 + lim F(n - 1)/F(n) = 1 + lim F(n)/F(n + 1) = 1 + 1/L, so L = 1 + 1/L. Solve for L, and the positive solution is L = φ.
@mohittiwari8934
@mohittiwari8934 5 жыл бұрын
Looking so smart bro 😍
@VoteScientist
@VoteScientist 5 жыл бұрын
6:14 the suspense was killing me.
@rezamiau
@rezamiau 5 жыл бұрын
Great!!! thank you.
@VaradMahashabde
@VaradMahashabde 5 жыл бұрын
How to get the explicit formula from the recursive? 😕😕
@jayapandey2541
@jayapandey2541 5 жыл бұрын
Black Pen Red Pen, Yay!
@someperson188
@someperson188 5 жыл бұрын
Given the first five terms of a sequence doesn't determine the formula for the sequence. There are infinitely many formulas for the sequence given and the limit can be anything (including +-infinity) or the sequence can have no limit. Here are some examples. (1) Let A be any real and a_n = (n+2)/(3n+1) + (A-1/3)(n-1)(n-2)(n-3)(n-4)(n-5)/n^5. Then a_1 = 3/4, a_2 = 4/7, a_3 = 5/10, a_4 = 6/13, a_5 = 7/16, and the limit of a_n as n approaches infinity is A. (2) Let a_n = (n+2)/(3n+1) +B(n-1)(n-2)(n-3)(n-4)(n-5), where B = 1 or B = -1. Then a_1 = 3/4,. . . , a_5 = 7/16, and the limit of a_n as n approaches infinity is infinity (resp., -infinity) if B =1 (resp., -1). (3) Let a_n = (n+2)/(3n+1) + ((-1)^n)(n-1)(n-2)(n-3)(n-4)(n-5)/n^5. Then a_1 = 3/4,. . . ,a_5 = 7/16, and the limit of a_n as n approaches infinity doesn't exist. Blackpenredpen is assuming that the formula for a_n is (in some sense) simplest, which I agree is the quotient of two linear functions.
@Qoow8e1deDgikQ9m3ZG
@Qoow8e1deDgikQ9m3ZG 5 жыл бұрын
you missed something , he assume limit exists ....... don't be stupid..... and all theory tends to use the simplest trial solution, no one interested in your solution .... why not extend your stupid solution to complex number too .... stupid ....
@someperson188
@someperson188 5 жыл бұрын
@@Qoow8e1deDgikQ9m3ZG I'm replying to you in a civil manner because, unlike you, I am attempting (with great difficulty) to be civil. You obviously missed (or didn't understand) the last sentence of my comment (i.e., What does "simplest" mean? It's not easy or perhaps possible to answer, is it?). Further, in example (1) (resp., (2)), I construct a formula a_n, such that a_1, a_2 ,..., a_5 take the given values and the limit is an arbitrary real number A (resp., infinity). So assuming the limit exists doesn't help your case. My objection isn't new; it's well-known to mathematicians, but clearly not to you. I regret that my anger is showing. I won't answer any further comments from you if your comment is again impolite.
@cristiancojocaru7546
@cristiancojocaru7546 5 жыл бұрын
You are so cool !
@BigDBrian
@BigDBrian 5 жыл бұрын
explicit formula: fuck recursive formula: recursive formula
@muhammetislambedirbeyoglu3135
@muhammetislambedirbeyoglu3135 5 жыл бұрын
Just waow 👏👏👏
@sheikhmansur3402
@sheikhmansur3402 5 жыл бұрын
As always ᵗʰⁱˢ ʷᵃˢ ᵖʳᵉᵗᵗʸ ᶜᵒᵒˡ 👍👍👍
@seroujghazarian6343
@seroujghazarian6343 3 жыл бұрын
3/4+4/7+5/10+6/13+... diverges 😋
@supriyajyoti22
@supriyajyoti22 5 жыл бұрын
IIT PE VIDEO'S
@maginobionrequiem9167
@maginobionrequiem9167 5 жыл бұрын
Cool
@bhuvird178
@bhuvird178 5 жыл бұрын
This video u do well. Do something better in maths. U can create new formula my dear just do my dear
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Bhuvi Rd We have a new formula called the Steve-Peyam theorem! But this comment section is too small so I cannot share it with you.
@bhuvird178
@bhuvird178 5 жыл бұрын
U proved the formula
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Bhuvi Rd Yea. Do you have your own formula too?
@bhuvird178
@bhuvird178 5 жыл бұрын
Yes I have RD formula that is the formula in calculus but I don't prove that formula
@habouzhaboux9488
@habouzhaboux9488 5 жыл бұрын
First!
believe in the math, not wolframalpha
14:50
blackpenredpen
Рет қаралды 1,1 МЛН
BAYGUYSTAN | 1 СЕРИЯ | bayGUYS
36:55
bayGUYS
Рет қаралды 1,9 МЛН
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН
Cat mode and a glass of water #family #humor #fun
00:22
Kotiki_Z
Рет қаралды 42 МЛН
Evaluating a limit from a recursive sequence
8:09
bprp calculus basics
Рет қаралды 29 М.
how Laplace solved the Gaussian integral
15:01
blackpenredpen
Рет қаралды 763 М.
Recursive Formula of Geometric Sequence
8:39
Mathema Teach
Рет қаралды 22 М.
so you want a VERY HARD math question?!
13:51
blackpenredpen
Рет қаралды 1 МЛН
A Brilliant Limit
16:58
blackpenredpen
Рет қаралды 1,4 МЛН
Proof: Sequence (3n+1)/(n+2) Converges to 3 | Real Analysis
6:53
Wrath of Math
Рет қаралды 34 М.
Integral of so many things! (great for calculus 2 review)
24:55
blackpenredpen
Рет қаралды 195 М.
How to evaluate infinite telescoping series! (the fast way)
14:59
bprp calculus basics
Рет қаралды 10 М.