Evaluating a limit from a recursive sequence

  Рет қаралды 29,956

bprp calculus basics

bprp calculus basics

Күн бұрын

Пікірлер: 59
@Vladivostok29
@Vladivostok29 3 жыл бұрын
Any chance we will get some Calc 3 on this channel? Thanks for all the content man
@ricardoguzman5014
@ricardoguzman5014 3 жыл бұрын
The red fractions in the denominator also converge to the square root of 2. 3/2, 7/5, 17/12, 41/29,... (√2 + 1)^n = a + b√2----> this formula also produces the coefficients of the fractions in the denominator which are a/b. Also, notice the sequence of integers in the fractions. The sum of numerator and denominator in each fraction is the denominator of the next fraction, and the sum of the numerator and twice the denominator in each fraction becomes the numerator of the following fraction. Example: 3/2--3 +2 = 5, so 5 is the denominator of the next fraction which is 7/5. 3 + 2x2 = 7, which is the numerator of the next fraction. Finally, the sequence produces all numbers that are both simultaneously square and triangular. The first fraction is technically 1/1. Now 1^2 x 1^2 = 1, which is the first number that is both square and triangular. The second fraction is 3/2, so we get 3^2 x 2^2 = 9 x 4 = 36, which is indeed the second number that is simultaneously square and triangular. Third fraction, 7/5. 7^2 x 5^2 = 49x25=1,225 which is the third one. Etc. Very cool sequence you picked.
@jorgelenny47
@jorgelenny47 3 жыл бұрын
If we assume that the limit exists, we can simply solve for x = 1 + 1/(x+1) => x - 1 = 1/(x+1) => (x-1)(x+1) = 1 => x^2 - 1 = 1 => x^2 = 2 Now then the question is whether there is any starting a_1 for which the limit approaches the negative branch of sqrt2
@t3od00r
@t3od00r Жыл бұрын
Thanks for the help. I really had no idea how to solve this problem.
@EngMorvan
@EngMorvan 3 жыл бұрын
The negative solution for L²=2 is for the limit when n tends to minus infinity. It's easy to see that if you know the formula for the general term a_n: a_n = √2×((1+√2)^n+(1-√2)^n)/((1+√2)^n-(1-√2)^n) And the process to find the above formula could be a nice video as well. 😉
@ryderpham5464
@ryderpham5464 3 жыл бұрын
could you derive the formula with a generating function? I attempted doing A(x) =a_n x^n but it doesn't seem to work out nicely with the denominators
@EngMorvan
@EngMorvan 3 жыл бұрын
@@ryderpham5464 I didn't try that approach. I used more basic methods. First, I supposed a_n = p_n/q_n where p_n and q_n are integers. Then, I applied the recursive equation of a_n to find a recursive linear system for p_n and q_n, which can be written in matrix notation as R_n = AR_n-1, where R_n is a column matrices with p_n and q_n, and R_n-1 the same, but with indexes n-1 instead of n. Applying recursively the matrix equation, we get R_n = A^(n-1)R_1. To calculate A^(n-1), I diagonalized A. The rest of the process is pretty straightforward.
@ryderpham5464
@ryderpham5464 3 жыл бұрын
@@EngMorvan interesting!
@ВасилийТёркин-к8х
@ВасилийТёркин-к8х 3 жыл бұрын
Every a_n is rational though
@EngMorvan
@EngMorvan 3 жыл бұрын
@@ВасилийТёркин-к8х yup. By construction, u c that the formula always provides rational numbers for any natural n.
@NewtonMD
@NewtonMD 3 жыл бұрын
Coincidentally, we had the limit of a recursive sequence on my further maths test today. But it was way duckin harder
@bprpcalculusbasics
@bprpcalculusbasics 3 жыл бұрын
What was the question?
@imtiazursyed1521
@imtiazursyed1521 2 жыл бұрын
Math is beautiful. You proved it one more time. This proof is genius. Love it.
@sujitsivadanam
@sujitsivadanam Жыл бұрын
Just by the nature of this recursive definition, you can see that "infinity" is not even possible, because the left hand side would approach infinity while the right hand side will approach 1, which is a clear contradiction.
@XTREMEShaurya-mg8xq
@XTREMEShaurya-mg8xq 9 ай бұрын
Bro n is tending to infinity and not An. An is tending to root 2 from the left side
@axeldaliramirezgonzalez1830
@axeldaliramirezgonzalez1830 2 жыл бұрын
OMGGGGGG you're such a genius always helping me with my doubts
@nitayweksler3051
@nitayweksler3051 3 жыл бұрын
How do you prove that it conv tho? I know how to do it for a series but for this one its wierd cus i cant say wether an+1< or > an for n>n0
@kepler4192
@kepler4192 2 жыл бұрын
Something my teacher in school said is that when we try to calculate recursive sequences, we take the U(n+1) as a function f(Un+1)= f(x) and then solve for f(x)=x. I tried it on this question and it gave 2 answers, sqr(2) and -sqr(2)
@ChrisKoyo
@ChrisKoyo Жыл бұрын
Another technique (my favorite) is to express the sequence in terms of n. Then solving like a normal function.
@JayTemple
@JayTemple 11 ай бұрын
This is similar to how I worked out the asymptotic limit of the ratios of consecutive numbers in the Fibonacci sequence, although I didn't know to prove that there WAS a limit.
@praketdesai6673
@praketdesai6673 2 жыл бұрын
Awesome video man, really helped
@jaywyn2584
@jaywyn2584 10 ай бұрын
I was lost trying to figure this one out. Perfect explanation. Well done.
@yoavwasserman8205
@yoavwasserman8205 3 жыл бұрын
You're a life saver
@bluexer9198
@bluexer9198 3 жыл бұрын
This is brilliant!
@panPetr0ff
@panPetr0ff 3 жыл бұрын
When I noticed the values a(n) oscillated around the resulting limits, I tried to express the members of the sequence using an alternating series: a(n)= 1 + ( 1/2 - 1/10 + 1/60 - 1/348 + 1/2030 - . . .1/M(n-1)) = 1 + SUM_(k=1)^(n-1) (-1)^(k+1)/M(k) ...for n>1; a(1)=1 where M(k) can be expressed from denominators in the fractions: 1/1, 3/2, 7/5, 17/12, 41/29 ==> 1*2, 2*5, 5*12, 12*29.... M(k) = 1/8*((1+√2)^(2k+1) + (1-√2)^(2k+1) - 2*(-1)^k) How to prove that members in the series have to be integers reciprocal ?
@fernr9496
@fernr9496 2 жыл бұрын
Thanks for the video. Very helpful 👍
@saharhaimyaccov4977
@saharhaimyaccov4977 3 жыл бұрын
Can u use more video's equation like this?
@pneujai
@pneujai 3 жыл бұрын
wow another nice way to calculate sqrt2
@tayserbinjafor7697
@tayserbinjafor7697 2 жыл бұрын
The common term should have either sqrt(2)+1 or sqrt(2)-1 for this sequence.
@ILoveMaths07
@ILoveMaths07 3 жыл бұрын
Very cool question!
@weipingsong9316
@weipingsong9316 Жыл бұрын
awesome explanation
@gogo-pj2lm
@gogo-pj2lm 3 жыл бұрын
Could show the convergence of odd and even subsequences first, then show two subsequences converge to the same limit, and hence the whole sequence converges.
@harsh4924
@harsh4924 3 жыл бұрын
❤️ from india
@olafcomments3765
@olafcomments3765 2 жыл бұрын
what if you have two roots for L?
@nalat1suket4nk0
@nalat1suket4nk0 3 жыл бұрын
Nice i guessed it from the start that it was 2^(1/2)
@golgathar5
@golgathar5 3 жыл бұрын
how?
@eliasmazhukin2009
@eliasmazhukin2009 3 жыл бұрын
@@golgathar5 Maybe because of sqrt(2)'s continued fraction? sqrt(2) = 1 + 1/(2 + 1/(2 + 1/2 + ...)))
@맹맛초코
@맹맛초코 3 жыл бұрын
But how can we proof that the sequence converges?
@mathiasfjsne8854
@mathiasfjsne8854 3 жыл бұрын
We can probably prove that the sequence is decreasing and bounded below by induction
@stephenbeck7222
@stephenbeck7222 3 жыл бұрын
Mathias Fjøsne but the sequence is clearly not decreasing. Perhaps we should start with showing the difference between a_n and a_(n+1) approaches 0.
@jessicapriscilacerqueiraba3493
@jessicapriscilacerqueiraba3493 3 ай бұрын
Thank you!!!
@chloehong5816
@chloehong5816 2 жыл бұрын
THANK U SO MUCH
@riskeydemon2171
@riskeydemon2171 2 жыл бұрын
nice vid dawg
@HSKMathematicalsolutions
@HSKMathematicalsolutions 27 күн бұрын
Thanks
@SimsHacks
@SimsHacks 3 жыл бұрын
a(0)=0, a(1)=1 a(n+2)=1/2 [a(n+1)+a(n)] Now try this method 🤣 You'll get L=L so no result
@avengersendgame8491
@avengersendgame8491 3 жыл бұрын
2nd from India
@Zeusbeer
@Zeusbeer 3 жыл бұрын
I personally think using a web plot and showing how that converges at the intersection of x = 1+1/(1+x) would have been more fun
@SimsHacks
@SimsHacks 3 жыл бұрын
We need to prove that it converges however. So this is not valid reasoning
@nicholasdreesen2064
@nicholasdreesen2064 3 жыл бұрын
a2n is decreasing and lower bounded; a2n+1 is increasing and upper bounded
@dlevi67
@dlevi67 3 жыл бұрын
Where's the beard gone? Did you take a continuous fraction off it every day?
@aldues00
@aldues00 Жыл бұрын
you don't even know if the limit exists, you cannot say a_n=L. Try to firts see that {a_n}n is monotone and bounded, then you can supose a_n=L
@amateurphi
@amateurphi 3 жыл бұрын
b) Prove your proof :)
@matejsnincak9186
@matejsnincak9186 Жыл бұрын
helpful
@RikardoAHP
@RikardoAHP 3 жыл бұрын
Thats how irrational numbers are made, arent they?
@fernandoheidercheidt6901
@fernandoheidercheidt6901 3 жыл бұрын
What if a(1) was set to be iqual to 2?
@Sealedaway
@Sealedaway 2 жыл бұрын
After testing a few iterations starting with a_1 = 2, there seems to be convergence towards sqrt(2) once again. Same thing for a_1 = 11. My guess is that this will always be the case as long as the sequence is convergent, and that all that changes is how quickly it converges. Note that when he finds the limit in this video, he does so without using the initial value even once. You could probably prove that sqrt(2) is a stable fixed point of the sequence, but I’ll leave that for people who know what they’re doing.
@harsh4924
@harsh4924 3 жыл бұрын
First 🥇😅
@AnakinSkywalker-zq6lm
@AnakinSkywalker-zq6lm 3 жыл бұрын
Look up the hp logo and rotate you’re phone 180 degrees… Thank me later!! Umm π radiants…
find an explicit formula from a recursive sequence
11:26
bprp calculus basics
Рет қаралды 33 М.
Definition of the Limit of a Sequence | Real Analysis
13:59
Wrath of Math
Рет қаралды 162 М.
Une nouvelle voiture pour Noël 🥹
00:28
Nicocapone
Рет қаралды 9 МЛН
Chain Game Strong ⛓️
00:21
Anwar Jibawi
Рет қаралды 41 МЛН
Don’t Choose The Wrong Box 😱
00:41
Topper Guild
Рет қаралды 62 МЛН
1 ^ ∞, It's Not What You Think
4:28
BriTheMathGuy
Рет қаралды 1 МЛН
How to find the limit of a recursively defined sequence
34:22
Darin Brown SJDC Math
Рет қаралды 7 М.
finding the derivative from an integral equation
6:11
bprp calculus basics
Рет қаралды 20 М.
finding a recursive formula and its limit
13:45
blackpenredpen
Рет қаралды 19 М.
Converging and Diverging Sequences Using Limits - Practice Problems
30:13
The Organic Chemistry Tutor
Рет қаралды 1,1 МЛН
How to solve hard integrals using just u-substitution
9:38
bprp calculus basics
Рет қаралды 51 М.
if x+y=8, find the max of x^y (Lambert W function)
12:59
blackpenredpen
Рет қаралды 765 М.
Proof: Sequence (3n+1)/(n+2) Converges to 3 | Real Analysis
6:53
Wrath of Math
Рет қаралды 34 М.
Integrate x^-x dx
20:37
Prime Newtons
Рет қаралды 140 М.
Une nouvelle voiture pour Noël 🥹
00:28
Nicocapone
Рет қаралды 9 МЛН