Moments of Inertia of Rigid Objects with Shape

  Рет қаралды 72,340

Flipping Physics

Flipping Physics

Күн бұрын

Пікірлер: 68
@aadrath1236
@aadrath1236 3 жыл бұрын
If you were in India a temple would have been built in your name XD. Can't believe how underrated this channel is. One of the best for CONCEPT CLARITY 💯
@FlippingPhysics
@FlippingPhysics 3 жыл бұрын
Maybe one day I will visit India!
@vishalraut8295
@vishalraut8295 Жыл бұрын
💯%😊
@Mohith1111
@Mohith1111 22 күн бұрын
that is true tho. I feel like every student in India should know ur channel
@freddibiri
@freddibiri 4 жыл бұрын
i love how the guy in the middle is always high.
@mangoface7914
@mangoface7914 3 жыл бұрын
Even though I used calculus to derive these equations on my own, I still could not intuitively conceive these formulae. Your video was so incredibly helpful! It also helps that you insinuate a classroom setting where each student comes to the answer on their own, so it makes it even more memorable. Thank you for putting these out on the internet!!
@FlippingPhysics
@FlippingPhysics 3 жыл бұрын
You are welcome!
@quahntasy
@quahntasy 6 жыл бұрын
Another one of the great video!
@FlippingPhysics
@FlippingPhysics 6 жыл бұрын
Thank you again sir!
@crazyfacts2600
@crazyfacts2600 3 жыл бұрын
Beautifully explained And for the first time I enjoyed and learnt seriously Good luck mate
@_BhagavadGita
@_BhagavadGita 6 жыл бұрын
You are the best, Mr P.
@sanjaySingh-ck6kd
@sanjaySingh-ck6kd 4 жыл бұрын
I salute the best Physics teacher.
@phenomenalphysics3548
@phenomenalphysics3548 5 жыл бұрын
0:59 will you please post calculus based explanation for calculation I
@FlippingPhysics
@FlippingPhysics 5 жыл бұрын
My in-class lectures about this are here :kzbin.info/www/bejne/jmSZc3SGq92Kh9U
@phenomenalphysics3548
@phenomenalphysics3548 5 жыл бұрын
@@FlippingPhysics thank you
@vivektodakar3426
@vivektodakar3426 3 жыл бұрын
I like the way of teaching.
@KaviBarwari-o6y
@KaviBarwari-o6y Жыл бұрын
thank you your the best teacher
@anarmehraliyev1286
@anarmehraliyev1286 3 жыл бұрын
That's very informative, thanks!
@FlippingPhysics
@FlippingPhysics 3 жыл бұрын
You're welcome!
@scamsituation3982
@scamsituation3982 6 жыл бұрын
I can certainly relate with that Beau.
@anishkumarsingh1019
@anishkumarsingh1019 3 жыл бұрын
You are an amazing teacher!!!
@ajaykrishnanr6468
@ajaykrishnanr6468 4 жыл бұрын
Really worth watching...great effort
@jonvassella1076
@jonvassella1076 4 жыл бұрын
very cool approach indeed - thank you very much
@sajaldeb329
@sajaldeb329 5 жыл бұрын
Nice explanation sir
@Raage.
@Raage. 5 жыл бұрын
Thanks For your Contribution to our understanding of physics.
@FlippingPhysics
@FlippingPhysics 5 жыл бұрын
Thank you for appreciating it.
@tannazheidari7857
@tannazheidari7857 3 жыл бұрын
It was excellent.thank u so much 👍👌
@Cutelobya
@Cutelobya 6 жыл бұрын
THIS VIDEO SAVED MY LIFE THANKYOU!!!!!!!
@FlippingPhysics
@FlippingPhysics 6 жыл бұрын
Hyperbole appreciated. You are welcome.
@058_shubham_sharma3
@058_shubham_sharma3 5 жыл бұрын
O really !!!
@AstroBananna
@AstroBananna Жыл бұрын
Very good
@tinimunson1242
@tinimunson1242 Жыл бұрын
Thank you so much for this video! It really helped me understand Rotational Inertia very well! But I have a question: Why does the thin hoop have a larger rotational inertia than the hollow sphere? I keep getting confused by it.
@reemazam3225
@reemazam3225 3 жыл бұрын
Thank you so much sir..
@KnightBlaze55
@KnightBlaze55 5 жыл бұрын
Very nice 😀 explanation sir
@FlippingPhysics
@FlippingPhysics 5 жыл бұрын
Thank you.
@ליהיימליך
@ליהיימליך 6 жыл бұрын
wow, that's a great video!
@FlippingPhysics
@FlippingPhysics 6 жыл бұрын
Glad to help!
@ashishpant7146
@ashishpant7146 6 жыл бұрын
Thanks sir
@FlippingPhysics
@FlippingPhysics 6 жыл бұрын
You are welcome.
@sayantan5663
@sayantan5663 3 жыл бұрын
Thank u sir❤️
@AyalaMrC
@AyalaMrC 6 жыл бұрын
Seams like there was a conceptual leap from the solid cylinder's fraction to the solid sphere's; I would have paused and looked at the differences in the shapes, or how the sphere tucks more of the mass in close. Other than that, great video!
@FlippingPhysics
@FlippingPhysics 6 жыл бұрын
The video was already way too long and I decided not to dwell on that particular issue, though I agree it is the least obvious of the comparisons.
@itsjoeeeeee
@itsjoeeeeee 4 жыл бұрын
@@FlippingPhysics Where could I find an explanation for how the shape of sphere and cylinder affects its moment of inertia?
@carultch
@carultch 3 жыл бұрын
​@@itsjoeeeeeeYou ultimately need calculus to determine why these moments of inertia are what they are. The thin cylinder and thin ring are two trivial examples that don't need calculus, since it is immediately obvious that all of the mass is concentrated at the full radius. You can use this as a shortcut, so that your differential mass unit is a series of thin cylinders, that approximate the solid cylinder or solid sphere. You then set up a sum of the corresponding moments of inertia of these differential mass units, which becomes an integral when there are infinitely many of them. Here's the solution for the solid cylinder: Given a cylinder of radius R, length L, and density rho, set up the differential mass element as a thin cylindrical shell at position r and thickness dr. It will also have length L and density rho like the solid cylinder. This differential mass element can unwrap like the label of a can, and will have thickness dr, length L, and width 2*pi*r, consistent with the circumference. Its mass dm is therefore dm=2*pi*rho*L*r*dr. We know the moment of inertia of a thin cylinder is m*R^2, so the differential moment of inertia (di) of our differential mass element cylinder of mass dm and radius r: dI = dm*r^2 Substitute dm: dI = 2*pi*rho*L*r*r^2*dr Simplify: dI = 2*pi*rho*L*r^3*dr We can treat 2*pi*rho*L as a constant. Pull it out in front as we integrate: integral dI = 2*pi*rho*L* integral r^3*dr I = 2*pi*rho*L * integral r^3 dr integral r^3 dr = 1/4*r^4 + C Evaluate the difference from r=R to r=0, noting that the arbitrary constants C cancel: 1/4*R^4 Reconstruct: I = 1/2*pi*rho*L*R^4 Recall that rho is mass/volume, and that the volume of a cylinder is pi*R^2*L: I = 1/2*pi*M/V*L*R^4 Substitute V = pi*R^2*L I = 1/2*pi*M*L*R^4 / (pi*R^2*L) Cancel pi, L, and 2 of the R's. Simplify and we get our solution: I = 1/2*M*R^2
@eranshukumari7591
@eranshukumari7591 Жыл бұрын
In my life, first tine I understood rotational physics.🥰🥰🥰🥰
@amarj9909
@amarj9909 5 жыл бұрын
Why it is r2 in moment of inertia ....instead of r from axis of rotation ...I feel one r is enough to make rotation ...then why r square...pls help to understand .... I hope you will explain .... thanks
@FlippingPhysics
@FlippingPhysics 5 жыл бұрын
I explain it in this video. kzbin.info/www/bejne/nZW4nIusd7yXmdU
@nasirkhalid6770
@nasirkhalid6770 6 жыл бұрын
Thanks you are the best.
@FlippingPhysics
@FlippingPhysics 6 жыл бұрын
As always. I appreciate your support.
@I-used-to-be-orcaz
@I-used-to-be-orcaz 8 ай бұрын
I know this is 5 years late but I rlly like ur shirt
@Harshitabha
@Harshitabha 2 жыл бұрын
Just wondering how did you get (1/12)mL^2 for the moment of inertia of a thin rod rotating about its center of mass? Is that something that just needs to be memorized or something we can derive?
@FlippingPhysics
@FlippingPhysics 2 жыл бұрын
I derive that equation in this video: www.flippingphysics.com/thin-rod-rotational-inertia.html Please do not memorize moments of inertia. You need to understand how mass distribution affects rotational inertia and to be able to compare their relative magnitudes like we do in this video, however, you do not need to have the equations memorized.
@Harshitabha
@Harshitabha 2 жыл бұрын
@@FlippingPhysics thank you!
@abhisheaksharma3765
@abhisheaksharma3765 5 жыл бұрын
Bo is my favourite.
@FlippingPhysics
@FlippingPhysics 5 жыл бұрын
This tells me a lot about you. 🙃
@أساطيركرةالقدم-ه1ح
@أساطيركرةالقدم-ه1ح 4 жыл бұрын
you are cool my friend
@stimulantdaimamld2099
@stimulantdaimamld2099 Жыл бұрын
great
@FlippingPhysics
@FlippingPhysics Жыл бұрын
thanks
@TheSeriousShowURL
@TheSeriousShowURL 4 жыл бұрын
super fun :))))
@freddibiri
@freddibiri 4 жыл бұрын
flipping useful.
@Mdsalmankhan8674
@Mdsalmankhan8674 4 жыл бұрын
I think aarti Sangwan from india and are you from flipins
@vestafarhan7580
@vestafarhan7580 4 жыл бұрын
Pls help me How you make difference between point mass And extended object
@carultch
@carultch 2 жыл бұрын
A point mass has all of the mass concentrated in a volume of space that is negligible. In other words, you can treat the object as if all of its mass is at the same point, and still get the same result as if you considered its distribution. A point mass is usually an approximation to keep the math simple, and not necessarily something that exists in reality. An extended object has a distribution of mass that is important to the problem in question, and we need to consider the location and distribution of mass to get the correct answer. As an example, consider a 100 gram (m) apple hanging on a string of negligible mass with its center 1 meter (L) below the top of the string, with a radius of 3 cm (r). In other words, a simple pendulum. Assume 3 significant digits. If we treat the apple as a point mass, the moment of inertia about the top of the string would be 0.1 kg-m^2, calculated via m*L^2. If we account for the apple's size, and treat it as a uniform solid sphere, we will calculate moment of inertia about the top of the string through 2/5*m*r^2 + m*L^2, and get the moment of inertia to be 0.100036 kg-m^2, which rounds to the same answer we had before. The apple might as well be treated as a point mass, since its size is insignificant compared to the 1 meter string length. Now, let's shorten the string to so that the center of the apple is 10 cm below the top of the string. Treating the apple as a point mass, gets us a moment of inertia of 0.001 kg-m^2. Treating the apple as an extended object, accounting for its shape as a uniform solid sphere, we will instead get 0.001036 kg-m^2, which we'd need to round to 0.00104 kg-m^2 for 3 significant figures. You now see that the 3 cm radius of the apple makes a difference, compared to what it would be if treated it as a point mass.
@giuseppemeola397
@giuseppemeola397 4 жыл бұрын
Mr clutch
@ilovepersephonie
@ilovepersephonie 4 жыл бұрын
i hate physics that is all
@Anthro_Wallah
@Anthro_Wallah 4 жыл бұрын
U r welcome
@mukulbelwal
@mukulbelwal 5 жыл бұрын
Thanks sir
@FlippingPhysics
@FlippingPhysics 5 жыл бұрын
You are welcome.
Torque Introduction
9:59
Flipping Physics
Рет қаралды 178 М.
Uniform Solid Cylinder Moment of Inertia Derivation
12:10
Flipping Physics
Рет қаралды 10 М.
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН
Try this prank with your friends 😂 @karina-kola
00:18
Andrey Grechka
Рет қаралды 9 МЛН
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН
99.9% IMPOSSIBLE
00:24
STORROR
Рет қаралды 31 МЛН
5 Lessons I Learned in 7 Years of Microscopy
10:04
Microbehunter
Рет қаралды 911
What is Moment of Inertia? (with Practice Problems)
19:30
Dan the Tutor
Рет қаралды 21 М.
How to Design a Wheel That Rolls Smoothly Around Any Given Shape
21:58
Morphocular
Рет қаралды 1,7 МЛН
Angular Momentum of Particles Introduction
9:51
Flipping Physics
Рет қаралды 19 М.
Demonstrating Rotational Inertia (or Moment of Inertia)
6:54
Flipping Physics
Рет қаралды 94 М.
Can MORE Dangerous Saw Blades Cut Wood?
23:40
Waterjet Channel
Рет қаралды 718 М.
The Most Mind-Blowing Aspect of Circular Motion
18:35
All Things Physics
Рет қаралды 757 М.
Understanding the Area Moment of Inertia
11:05
The Efficient Engineer
Рет қаралды 1,7 МЛН
7 Outside The Box Puzzles
12:16
MindYourDecisions
Рет қаралды 511 М.
Moment of Inertia
8:31
Physics with Professor Matt Anderson
Рет қаралды 136 М.
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН