The light turns off --> (sound of some sleeping gases) --> Peyam falls down --> the story of the Gaussian Integral and Dr. Peyam . . . . . . to be continued
@MrCigarro505 жыл бұрын
Esta serie es simplemente fascinante...Gracias Dr. Peyam.
@waterfirecards51285 жыл бұрын
In 6:30 how did you get from the first line to the second? And how can you just take away the d/dt away from the integral?
@alichowdhury35025 жыл бұрын
Notice derivative of first line is second line. It is effectively doing the partial derivative with respect to t.
@waterfirecards51285 жыл бұрын
Ali Chowdhury yes but then how did he just move out the d/dt away from the integral?
@alichowdhury35025 жыл бұрын
WaterFireCARDS by Leibniz Theorem. So he took the partial derivative with respect to t and the took out the derivative.
@rajatkhandelwal72765 жыл бұрын
Sir plz change the angle of the camera.
@drpeyam5 жыл бұрын
Ok
@cheshstyles5 жыл бұрын
@@drpeyam from ~peyam over 6 to ~peyam over 3 Still love your videos tho!
@michelkhoury14705 жыл бұрын
Very nice solution... I solved this famous integral using gamma function.
@mihaipuiu62314 жыл бұрын
I like very much Dr. Peyam , because ...1.He knows Math., and 2. He has a lot of charisma. Good for You!
@Rundas694205 жыл бұрын
The best way of calculating integrals: Go in the opposite direction xD. Now I wonder whether you can find derivatives using integrals. Would be fun though. For some people at the university where I study maths, saying something like "plugging in t=infinity" would be considered some kind of mathematical mutilation. Germans can be weird sometimes :D.
@Xrelent5 жыл бұрын
You should check out FlammableMaths. He does a lot of Feyman integration :)
@Rundas694205 жыл бұрын
@@Xrelent I already know this boi and his nice videos. Thanks for the recommendation anyways man :D
@ashwinvishwakarma25315 жыл бұрын
kind of hard to see the board from this perspective
@kqp1998gyy4 жыл бұрын
I suggest to use the left side only and flip between the inner and outer board.
@srpenguinbr5 жыл бұрын
Very neat solution!. When I saw the title, I had the idea of using Feynman integration with a(t)=int from 0 to inf of e^-ax^2dx if you differentiate and solve the separable diff eq (a'(t) can be expressed in terms of a(t)), you can easily get an explicit expression in terms of t. However, I wasn't able to think of a nice value of t to plug in as an attempt to solve for the constant. So I think it does not work
@drpeyam5 жыл бұрын
Next video :)
@holyshit9222 жыл бұрын
Infact he used Leibniz rule in reverse
@lakhdarhaouassi49485 жыл бұрын
13 minutes sont inoubliable. merci
@paulbooer71715 жыл бұрын
Really interesting. I may have to watch it 5 times before I get it. It is like magic.
@michelkhoury14705 жыл бұрын
But I think we use Lebesgue theorem not because integral of 0 is not necessary 0 but because to switch limit and integral sign
@patricksalhany87875 жыл бұрын
Yeah, to justify that lim(integral)=integral(lim).
@TieJote5 жыл бұрын
Thats what he said, dominate convergence theorem. Now i am not sure if lebesgue theorem is an alternate name, but Peyam said correctly what theorem he used.
@patricksalhany87875 жыл бұрын
It is called dominated convergence theorem, or Lebesgue's dominated convergence theorem.
@drpeyam5 жыл бұрын
Yep, that’s what I meant
@michelkhoury14705 жыл бұрын
@@TieJote yes you're right they are the same
@sugarfrosted20055 жыл бұрын
I legitimately thought to ask if you were using his notes.
@liyi-hua21115 жыл бұрын
9:58 If you let t equals to zero then the second integral will not be exist since you have divided by t in your calculation. Or should this method be presented as lim-to-infinity form to be more specific
@TheGeneralThings5 жыл бұрын
From 12:54 onwards, my jaw dropped to the floor. That was so satisfying to watch!
@michaelbaum6796 Жыл бұрын
Nice solution👍
@adityavarshney71895 жыл бұрын
The betrayal at 3:30 when he says he's gonna use u-sub but instead uses y xD
@MathematicIsFun5 жыл бұрын
The board is impossibly small and invisible on the right. Can you please change the angle of your camera?
@drpeyam5 жыл бұрын
Ok
@xy94395 жыл бұрын
This was the way I was shown in class for the first time actually
@GoravKumar-cm5dz5 жыл бұрын
Dear sir 1+2+3+4+5+6+7=-1/12 how please expand
@drpeyam5 жыл бұрын
Outrageous divergent series kzbin.info/www/bejne/bITYl5ZodsSFe8k
@boukharroubamediane1194 жыл бұрын
Wonderfully solved by calculus😊👍. The perspective shooting is convenient too👍
@YOUSIFPOTATOYT05 жыл бұрын
Can you make the camera nearer to the white board next time
@drpeyam5 жыл бұрын
Ok
@jacoboribilik32533 жыл бұрын
Holy cow, good proof
@wolframalpha86345 жыл бұрын
Hey!!Dr.Peyam!!
@PackSciences5 жыл бұрын
Didn't know that one, interesting 👍.
@juanjuan-mi4gi3 жыл бұрын
Integral e-x3 ?....
@orangeguy54635 жыл бұрын
AMAZING! This is the first one that really blew my mind with its elegance. Great proof, thanks for sharing!
@shanmugasundaram96885 жыл бұрын
The very same method used to calculate the integral of sin x^2 from 0 to infinity.
@drpeyam5 жыл бұрын
Yes, I posted a video on that
@snejpu25085 жыл бұрын
press 5. : )
@maxwellsequation48874 жыл бұрын
5
@catholic_zoomer_bro5 жыл бұрын
One Gaussian boi
@tehyonglip92035 жыл бұрын
Nice T-shirt
@Debg915 жыл бұрын
So far we have always ended up with the integral squared 🤔