Hello Dr.Peyam, the Kummer (Fourier) series (16:38) was derived by Prof. E.E.Kummer of Breslau and published in "Beitrag zur Theorie der Function . Journal Für Die Reine Und Angewandte Mathematik (Crelles Journal), 1847(35), 1-4. doi:10.1515/crll.1847.35.1 " (page 4, first equation) sci-hub.se/10.1515/crll.1847.35.1 (C is the Euler-Mascheroni constant, l is the natural logarithm) Ihre Videos sind toll!
@drpeyam5 жыл бұрын
That is amazing, thank you for the cool comment!
@rot60155 жыл бұрын
this is awesome, thanks for sharing
@saulmendoza16525 жыл бұрын
Nice publication.
@pablojulianjimenezcano43625 жыл бұрын
This is the most incredible integral I've ever seen!!
@cycklist5 жыл бұрын
What an amazing ride that was! Thank you for introducing the Kummer series too, how interesting.
@emanuelmartinez35855 жыл бұрын
More series and integrals! OMG So much fun 🙊
@Rundas694205 жыл бұрын
I think this boi is on one level with 1/(tan(x)+(tan(x))^(1/3)). These integral-videos never fail to entertain and also remind me that I still have stuff to learn :D
@robertreynolds15925 жыл бұрын
The Hankel contour along with Cauchy's integral formula is very good at deriving the integrals in Prudnikov, Bierens de Haan, Gradshteyn and Grobner books.
5 жыл бұрын
Euler-mascaropne :) constant is a delicious one :)
@karolakkolo1235 жыл бұрын
I am not sure but I think a general solution may exist (indefinite integral), and be written in terms of polylogarithm functions. Also, there is an intimate connection between the gamma function, zeta function, and the polylogarithms. The appearance of the gamma function in the answer gives more hope for the existence of the indefinite integral.
@karolakkolo1235 жыл бұрын
I'm determined to find it when I wake up tomorrow
@Anokosciant3 жыл бұрын
Did you find it?
@karolakkolo1233 жыл бұрын
@@Anokosciant nope haha I completely forgot about this. I didn't even do integrals for a long time now. But I'll write this down somewhere and try it in some spare time
@DevalMehtaAstrokidintraining5 жыл бұрын
We could eliminate the dependence on the gamma function by using the fact that Γ(z+1) = zΓ(z), right? In fact, doing that and then distributing the exponent, rather than using the properties of the logarithm to bring it outside yields (π/4)ln(π^2/8).
@albertemc2stein2905 жыл бұрын
Great video Dr Peyam! But why are we allowed to use the power series at 4:35 with the constraint of |x| < 1 when at u = 0 -> exp(-2u) = 1?
@drpeyam5 жыл бұрын
It’s an improper integral :)
@albertemc2stein2905 жыл бұрын
@@drpeyam So the main integral is a limit problem and the divergent series just vanishes in the end?
@neilgerace3555 жыл бұрын
1:20 Unleash the power of CHEN LU!
@chandankar50325 жыл бұрын
Wow ! Seems like you are after flammable maths
@quantumcity66795 жыл бұрын
Thanks.... Dr.peyam.....for this beautiful integral... 🤓....keep it up 😘...but can you please tell me when we can interchange integral and summation?...i mean the condition... ♻️🔊
@juauke5 жыл бұрын
IINM, you can interchange 2 integrals or an integral and a sum (the latter being a special case of the former) if when you calculate the integral but with the absolute value of the integrand (the thing inside the integral without the dx), you get a finite answer. It's called Fubini's theorem (Fubini-Tonelli is probably more accurate but I'm not sure here) as indicated by πm. In mathematical terms, you'd get for the sum and integral case : let f be some measurable function. Let A be a σ-finite space. ∫_A means the integral over A. if ∫_A Σ |f(x)| dx < ∞ then ∫_A Σ f(x) dx = Σ ∫_A f(x) dx Voilà. Hoping this was clear enough :), if I did some plumbers please feel free to tell me, I'm always happy to learn more about Mathematics.
@quantumcity66795 жыл бұрын
@@juauke thanks....for this information ..... I like your presentation and math language that you had used here.... 😇..👍
@juauke5 жыл бұрын
@@quantumcity6679 you're welcome :^)
@quantumcity66795 жыл бұрын
@@juauke appreciate... 😅
@pedroalonso76063 жыл бұрын
I think both gamma functions can be absorbed by a Euler Beta function, and given gamma(1/2)=sqrt(pi) it allows us to play with the other sqrt(pi) term.
@GreenMeansGOF5 жыл бұрын
Equivalently, we have π*ln(Γ(3/4))-π*ln(π)/4
@lucasdepetris58965 жыл бұрын
Hello Dr. Peyam. I'm Lucas from Argentina and I have a question for you. Considering the arithmetical series A1, A2, A3...=1, 3, 5... Namely the odd numbers. Is there exist an Asub i term?? Is there a way to expand the series for complex numbers just like the gamma function with the facoreo?
@drpeyam5 жыл бұрын
Not sure if a definition of odd exists for complex numbers
@CamiKite5 жыл бұрын
Thanks for this very interesting journey! You know you did a great job when you find something that Wolfram Alpha doesn't know 😉
@chinesecabbagefarmer5 жыл бұрын
Thanks for this upload! I'll be watching this one very SLOWLY
@brunorepetto89285 жыл бұрын
One of your most interesting videos. But you threw me for a spin at 10:45. You pulled the exponent 2N+1 of the -1 in series C out of a hat. But you used the correct exponent N+1 later on when you addressed series C by itself in Step 6.
@zerospeed64125 жыл бұрын
Why not express e^u + e^-u is 2cosh(u)? That would trigger a certain integration by parts strategy?
@benwatson68995 жыл бұрын
It was really an amazing integration....I loved it.....thanks a lot....
@andygregory23905 жыл бұрын
Fantastic when the Euler - Mascheroni Constant just vanishes. "They also serve who only stand and wait."
@drpeyam5 жыл бұрын
Andy!!! Oh, I just made a video yesterday and thought of you, I think you’ll like it :)
@firstlast92515 жыл бұрын
great video as always!
@sandorszabo24705 жыл бұрын
I don't understand STEP 2, 4:32. 1 over 1 + exp(-2u) = 1 over 1 - exp(-2u).
@harikrishna2k5 жыл бұрын
He corrected it...in the next line.
@uva13125 жыл бұрын
Great videos. I always learn a lot, keep it up.
@thomasborgsmidt98014 жыл бұрын
Just to nit pick, but it gives me an opportunity to demonstrate that Vivaldi and "I Lombardi" has little in common. Verdi (from "I Lomardi") with Luciano Pavarotti: kzbin.info/www/bejne/Z5zJZoqNndKUmLc The social distancing to the soprano is most probably due to Pavarotti's partiality to garlic! Let me remind You: The librettist is Temistocle Solera and not Piave. Contrast with Vivaldi (Griselda) with Cecilia Bartoli: kzbin.info/www/bejne/aICcgJmuiJWlZpo
@andygregory23905 жыл бұрын
Nice work again but board angle still an issue when you write on the right hand top corner
@drpeyam5 жыл бұрын
I know... I’m filming the videos in batches, and it’s fixed in the next batch, which won’t be for another 10-20 videos or so
@andygregory23905 жыл бұрын
Is the tidy up at the end original to you, using reflection formula ?
@carlosgiovanardi81975 жыл бұрын
Awesome!! thanks for sharing.
@66127705 жыл бұрын
So... Are you saying that the question originally was put purely because "It should have an Answer!" ??
@anandhuh78875 жыл бұрын
Thanks for the video 😍
@robertreynolds15925 жыл бұрын
Reynolds, R.; Stauffer, A. A Definite Integral Involving the Logarithmic Function in Terms of the Lerch Function. Mathematics 2019, 7, 1148.
@aneeshsrinivas90883 жыл бұрын
26:45 hey don't be so mean to my friend yoshi. he freaking raised mario and is adorbs as hell.
@robertreynolds15925 жыл бұрын
Here is another article on ArcTangent integrals: www.mdpi.com/2227-7390/7/11/1099
@maximilianmueller47075 жыл бұрын
I have Kummer when See the end but still love it thank you peyam
@drpeyam5 жыл бұрын
Hahaha, awwww!!!
@cheshstyles5 жыл бұрын
I enjoy your videos. A suggestion: adjust your camera angle, or at least start writing on the left most side of the board. It gets a little hard to see as you work more toward the right side of the board. Just an opinion! Again, I enjoy the skill, personality and enthusiasm you bring sir :)
@drpeyam5 жыл бұрын
Thanks!
@MrRyanroberson15 жыл бұрын
In the end, the poor constant was only useful as a placeholder. It got so close to being truly useful
@ilanpi5 жыл бұрын
I. Vardi, Definite Integrals an Introduction to Analytic Number Theory, American Math. Monthly 95 (1988), 308-315.
@TheRedfire215 жыл бұрын
Do a derivation of the kummer series!(i dont know german :P)
@drpeyam5 жыл бұрын
Hahaha, I actually always thought you’re German 😂 You have a very German name
@LucaBlaLP5 жыл бұрын
I think you're missing a parenthesis in the thumbnail^^
@drpeyam5 жыл бұрын
Oh wow, you’re right 😂
@aneeshsrinivas90882 жыл бұрын
lombardi? gee i've been saved by fox how swell. hey einstein i'm on your side.move it fox he's right behind you.insert some other falco quote here.
@RaviShankar-ct7gi5 жыл бұрын
sir complex analysis questions plzz
@drpeyam5 жыл бұрын
There’s a complex analysis playlist
@RaviShankar-ct7gi5 жыл бұрын
sir these videos needs to be more in qwantity. only 12 . why dont you make marathon of 100 qs on complex analysis like bprp did on integrals
@RaviShankar-ct7gi5 жыл бұрын
sir you can break bprp record
@andriusjonaitis85095 жыл бұрын
Sometimes I think math is like magic. :-)
@rakhimondal59495 жыл бұрын
Great
@Debg915 жыл бұрын
Kuma is bear in japanese 🐻
@wompastompa36925 жыл бұрын
Kuma, Chen Lu, I think Dr. Peyam likes fighting games.
@drpeyam5 жыл бұрын
Hahahaha
@Anokosciant3 жыл бұрын
Coomer series : *exists*
@johannesh76105 жыл бұрын
This Mario and Yoshi reference😁
@stydras33805 жыл бұрын
Nice :D
@SartajKhan-jg3nz5 жыл бұрын
U never did the proof of A...
@andreasxfjd41415 жыл бұрын
Mathematica 11 cannot solve this analytically (but numerically -0.2604428...) 😌