My solution Given equation:- √(6-√(6+x))=x √(6-√(6+x))=√(x)² Now comparing the radical inner term So,it becomes 6-√(6+x)=x² Subtracting '6' on both sides -√(6+x)=x²-6 Squaring on both sides we get 6+x=x⁴-12x²+36 Simply further x⁴-12x²-x+30=0 Now, P₁(x)=x⁴-12x²-x+30....(1) P₁(1)≠0 P₁(2)≠0 P₁(3)=0 So, x=3 is a root x-3 is a factor....(2) (1)÷(2) (x⁴-12x²-x+30)÷(x-3)=(x³+3x²-3x-10) So, P₂(x)=x³+3x²-3x-10....(3) Initial guess x=-2 P₂(-2)=0 So, x=-2 is a root x+2 is a factor....(4) (3)÷(4) (x³+3x²-3x-10.)÷(x+2)=(x²+x-5) P₃(x)=x²+x-5 We can use quadratic formula x=(-1±√21)÷(2) After some checking valid solution of 'x' x=(-1+√21)÷(2)
@SALogics3 ай бұрын
Very nice trick! I really appreciate that ❤
@kareolaussen8192 ай бұрын
To check that ((sqrt(21) -1)/2)^2
@SALogics2 ай бұрын
Very nice! ❤
@abbasmasum1633Ай бұрын
Good method. But I solved it using Syn, Div. once I formed my 4th degree polynomial, I found the factoring too long and the concept should match the level as factoring is a low level and your example is an upper level of algebra.
@SALogicsАй бұрын
Very nice! ❤
@SidneiMV2 ай бұрын
√[6 - √(6 + x)] = x x ≥ 0 √(6 + x) = u √(6 - u) = x 6 + x = u² 6 - u = x² u² - x² = u + x (u + x)(u - x) - (u + x) = 0 (u + x)(u - x - 1) = 0 u = - x ∨ u = x + 1 u = -x => 6 + x = x² x² - x - 6 = 0 (x - 3)(x + 2) = 0 x = 3 ∨ x = -2 [ both are invalid ] u = x + 1 => 6 - (x + 1) = x² x² + x - 5 = 0 *x = (-1 + √21)/2*
@SALogics2 ай бұрын
Very nice trick! ❤
@jackshen98452 ай бұрын
Very good!
@kareolaussen8192 ай бұрын
You can immediately rule out x+u=0, since x>0, u>0. Otherwise very elegant solution❤.
@bandarusatyanandachary1181Ай бұрын
Why can't we use factor theorum to solve the problem in simplest way.
@SALogicsАй бұрын
Yes, it can be done so. ❤
@tomtke73513 ай бұрын
this problem's solution is a bunch of hocus pocus. A lot of fumbling around to factor without any real structure.
@kareolaussen8192 ай бұрын
To solve the equation x^4-12x^2-x+30=0, first search for integer solutions. These must be integer factors (positive or negative) of 30. It is clear that the author knows that two solutions are x=3 and x=-2, and organizes the calculation to factor out (x-3)(x+2). This can be done by long polynomial division, which is essentially what the author does.
@tttttt58589Ай бұрын
a common task for a Russian school. a class with an in-depth study of mathematics. nothing complicated)
@SALogicsАй бұрын
Very nice! ❤
@mrhook19432 ай бұрын
Why not use synthetic division?
@SALogics2 ай бұрын
Nice Suggession! ❤
@rasulovamahfuza3972 ай бұрын
x^4-12x^2-x+30=0 x=-2 16-48+2+30=0
@Cookielolll2 ай бұрын
Plug 2 you get sqart of 6 - sqart sqart of 6+2 = sqart 6 - sqart sqart 8 = sqart 6-2=2
@Cookielolll2 ай бұрын
And x=2
@SALogics2 ай бұрын
Very nice! ❤
@tomtke73513 ай бұрын
sqrt[6-sqrt(6+x)]=x square {sqrt[6-sqrt(6+x)]=x} 6-sqrt(6+x)=x^2 rearrange x^2 - 6 = -sqrt(6+x) squar{x^2 - 6 = -sqrt(6+x)} 6+x=[x^2-6]^2 ///// this results in an x^4 term yielding there's FOUR solutions. 6+x=x^4-12x^2+36 rearrange x^4 +0x^3-12x^2 -x+30
@SALogics3 ай бұрын
Very nice trick! ❤
@ДмитрийЗенков-х7о2 ай бұрын
Почему 3 не подходит для решения? 6+3=9 корень из 9 = +3, - 3, берём-3 отнимаем от 6=9, корень из 9 = 3, -3 В правой части 3 И получается равно в 50%😂 Квантовая запутанность.
@SALogics2 ай бұрын
3 отклоняется, поскольку квадрат 3 больше 6 и при проверке мы не можем брать -ve значение квадратного корня ❤
@ДмитрийЗенков-х7о2 ай бұрын
@SALogics Откуда вы взяли это ограничение? Проверка осуществляется постановкой на месте Х ответа и при постановке 3 вместо Х, нигде не получается корня из отрицательного числа.
@ДмитрийЗенков-х7о2 ай бұрын
@SALogics По существу это уравнения пересечение прямой и пораболы и прямая пересекает пораболу в 2 х точках.Нарисуйте график и всё станет понятно