Germany | A nice Math Olympiad Logarithmic Equation | Exponential Simplification Problem | Find x=?

  Рет қаралды 10,281

Super Academy

Super Academy

Күн бұрын

Пікірлер: 8
@YAWTon
@YAWTon 4 ай бұрын
Obviously there is only one real solution (from monotonicity of LHS). The solution x satisfies 3^log(x)=4, which is easy to solve for x (x=4^(1/log(3)), assuming natural log).
@juanalfaro7522
@juanalfaro7522 3 ай бұрын
Let y=3^log (x), then y^3 + y = 68. Clearly y=4 is the only solution because is a solution and y^3 + y is an increasing function (f'(x) = 3x^2 + 1 > 0). Thus log (x) = log (4)/log (3) -> x = 10^(log(4)/log(3)) = 18.2751
@baselinesweb
@baselinesweb 4 ай бұрын
Nice job
@superacademy247
@superacademy247 4 ай бұрын
Thanks!
@UKPEINDANIELU.
@UKPEINDANIELU. 4 ай бұрын
Fantastic
@superacademy247
@superacademy247 4 ай бұрын
Thank you so much 😀
@ludmilak9396
@ludmilak9396 4 ай бұрын
А почему нужно было основание 10? Разве нельзя использовать любое иное основание?
@superacademy247
@superacademy247 4 ай бұрын
Base 10 is a common base. And I wanted the result to look beautiful. You can choose any base if you don't care about fancy solution. And most importantly, base 10 enables us to get rid of the logarithm on the LHS, a clear way of obtaining the value of x.
When mom gets home, but you're in rollerblades.
00:40
Daniel LaBelle
Рет қаралды 128 МЛН
A nice exponential equation to solve| Math Olympiad #maths #matholympiad
7:09
Germany Olympiad Mathematics|Exponential Equation.
7:09
Dennis Online Math Academy
Рет қаралды 2,7 М.
Hardest Exam Question | Only 8% of students got this math question correct
11:28
Can you Pass Stanford University Admission Simplification Problem ?
20:02
A Nice Algebra Simplification | Math Olympiad | Give It a Try!
11:26