Obviously there is only one real solution (from monotonicity of LHS). The solution x satisfies 3^log(x)=4, which is easy to solve for x (x=4^(1/log(3)), assuming natural log).
@juanalfaro75223 ай бұрын
Let y=3^log (x), then y^3 + y = 68. Clearly y=4 is the only solution because is a solution and y^3 + y is an increasing function (f'(x) = 3x^2 + 1 > 0). Thus log (x) = log (4)/log (3) -> x = 10^(log(4)/log(3)) = 18.2751
@baselinesweb4 ай бұрын
Nice job
@superacademy2474 ай бұрын
Thanks!
@UKPEINDANIELU.4 ай бұрын
Fantastic
@superacademy2474 ай бұрын
Thank you so much 😀
@ludmilak93964 ай бұрын
А почему нужно было основание 10? Разве нельзя использовать любое иное основание?
@superacademy2474 ай бұрын
Base 10 is a common base. And I wanted the result to look beautiful. You can choose any base if you don't care about fancy solution. And most importantly, base 10 enables us to get rid of the logarithm on the LHS, a clear way of obtaining the value of x.