What Makes a Good Feature? - Machine Learning Recipes #3

  Рет қаралды 523,553

Google for Developers

Google for Developers

Күн бұрын

Пікірлер
@rac
@rac 8 жыл бұрын
loving this series!
@hejarshahabi114
@hejarshahabi114 5 жыл бұрын
holy god, Ive been looking whole KZbin and torrent to find a best package for learning machine learning and I watched many videos, but believe me I am totally in love with your course, this is awesome, you explain it so simple it is like you teach me in my mother tongue. i wish you best like my man.
@medupidups4741
@medupidups4741 5 жыл бұрын
Me too this is clear and straight to the point
@EmettSpeer
@EmettSpeer 8 жыл бұрын
I love your series and wish you would put out videos more often.
@JBGordon
@JBGordon 8 жыл бұрын
+Emett Speer Thanks so much! Episode #4 is live: kzbin.info/www/bejne/bmXKooaYgch1fKc
@ThereIsNoSpoon678
@ThereIsNoSpoon678 4 жыл бұрын
Everyone complaining and wanting more episodes. Here I am in 2020 enjoying all 10 of them so far.
@sephirothjc
@sephirothjc 8 жыл бұрын
I have limited knowledge of programming and computer science, yet I find this series very approachable and fun.
@giantneuralnetwork
@giantneuralnetwork 8 жыл бұрын
Loved the stacked histogram, nice way to visualize the different means of the distributions!
@mitchese1
@mitchese1 8 жыл бұрын
This is a really great series, please publish more often/sooner!
@Technologynorth
@Technologynorth 8 жыл бұрын
Really enjoying this series. The examples are quality, and you can tell you have put a lot of thought into them. Thanks for making the subject clear and interesting in each episode.
@Abdullah-mg5zl
@Abdullah-mg5zl 6 жыл бұрын
*quick summary of the video:* - let's say that your goal is develop a program that can distinguish between two breeds of dogs - what features do you want your example data to have? - you want the features to be the "distinguishing" features between the breeds, i.e. features that are very different between the two dog breeds - for example, if the two dog breeds tend to have very different heights, you want to use height as a feature in your training data - if on the other hand, the two dogs have about the same distribution of eye colors, you don't want to use eye color as a feature - you also don't want to use features that are highly correlated (i.e. that don't bring in new information) - you want to use simple features, as simple features will require less examples to get a decent classifier - you wanna be careful about adding too many features, especially if the features are not "distinguishing" features, they may just by chance be distinguishing in your example data, thus your classifier will start basing its predictions based on these faulty features *key thing to take away from the video:* Selecting features is extremely important. Select the simple, distinguishing features, that bring in new information (i.e. that aren't highly correlated). Thanks so much for these videos!
@alxleiva
@alxleiva 8 жыл бұрын
WE WANT MORE EPISODES!!!!
@ErnestGWilsonII
@ErnestGWilsonII 7 жыл бұрын
Agreed
@net
@net 8 жыл бұрын
Patiently awaiting the next episode in two weeks!
@sanjayakumarsahoo2293
@sanjayakumarsahoo2293 8 жыл бұрын
Awesome series, prevents myth that machine learning is difficult
@philipsalvo
@philipsalvo 8 жыл бұрын
Josh, Thank you so much to you and your team for building this series! In particular, I really like your 'tl;dr' approach and keeping things grounded in accessible, real-world examples -- I can't wait to see what comes next!
@arkrou
@arkrou 8 жыл бұрын
For feature selection: is having no individual prediction power (in your example, eyes) enough to tell whether those features have no value at all? Could they not have some non-linear joint predictive power with some other features?
@codingwithjoyk
@codingwithjoyk 8 жыл бұрын
Very cool series & I appreciate the links to the examples and especially the "article that inspired". Extra links like that really help! Thank you!
@gbhall
@gbhall 8 жыл бұрын
I could honestly watch Josh all day. He presents really well. Keep up the good quality content Josh! :)
@jamiequigley5906
@jamiequigley5906 6 жыл бұрын
Creepy smiles at the end of each sentence, "Smile MORE Josh" Marketing bellows!
@michaelwhitlock7398
@michaelwhitlock7398 4 жыл бұрын
Now I can't unsee it
@andreasparasian7225
@andreasparasian7225 4 жыл бұрын
Ik right, I mean yea this is very informational but he doesnt have to act like he is inhuman or sth...
@MattSiegel
@MattSiegel 8 жыл бұрын
terrific episode! those heuristics for feature selection are invaluable. also, lol @ whoever produces the graphics: the frontmost dog *head tilt* XD
@EddieImada30
@EddieImada30 8 жыл бұрын
Very good explanation! Looking forward for new episodes!
@luisleal4169
@luisleal4169 8 жыл бұрын
How do you use categorycal features, for example, we are trying to train a classifier and one of the features is "State"(or maybe "city"), do you create a mapping table where every state(or city) gets a numerical representation? Or would you solve this at programming level: looping through the states(or cities) and finding a classifier for every state(or city) ?
@HubertRozmarynowski
@HubertRozmarynowski 5 жыл бұрын
How to get that pretty data visualisation from matplotlib like in 2:05 ?
@diegolima2098
@diegolima2098 8 жыл бұрын
I just want you to know that I loved the article reference in this video. Please refer to more nice articles like this.
@nandishajani
@nandishajani 6 жыл бұрын
I tried the same code but the graph is looking very ugly. There are no spaces between the bars. Can anyone please help?
@mrtnsnp
@mrtnsnp 8 жыл бұрын
I enjoy the series. Is it possible to provide the source code (and possibly data if not included in sklearn) so we can follow along and experiment while watching?
@JBGordon
@JBGordon 8 жыл бұрын
+Maarten Sneep Good idea! I've been meaning to, but haven't found cycles yet. In the mean time, I'm trying to keep the code nice and short (~20 lines or less).
@alsonyap
@alsonyap 8 жыл бұрын
Great job on the video! I can tell that you have taken feedback from previous videos and made adjustments. Thanks for the effort! Will be waiting for the next episode :)
@DerekEskens
@DerekEskens 8 жыл бұрын
Great series so far. Considering independent features, for something like a dog, would capturing both height and weight be counter-productive since they are most likely interrelated?
@amomasi9909
@amomasi9909 5 жыл бұрын
This was incredibly useful, Josh. Thanks.
@ameynaik2743
@ameynaik2743 6 жыл бұрын
Wasn't this episode a bit inconclusive? Does anyone know the next episode in this series which discusses about the features?
@tkmallik86
@tkmallik86 8 жыл бұрын
Awesome videos, probably the best ML course by far
@dipalimalviya6921
@dipalimalviya6921 7 жыл бұрын
hey Josh! I wanted to learn concepts and standard algorithms of machine learning ,please suggest me how i can do this?It will be so helpful. I also want more tutorial of this series.Thanks for this 9 episodes series
@sukantakr1269
@sukantakr1269 6 жыл бұрын
Dipali Malviya you can watch prof Andrew's ml tutorial! very very helpful to learn algos.. I have also been some ppts made by our one ml research and developer prof!
@KelvinKagia
@KelvinKagia 8 жыл бұрын
so awesome i think machine learning is the easiest topic i have ever come across having a good background in programming,probabbility and statistics
@asiddiqi123
@asiddiqi123 8 жыл бұрын
Is it possible that we don't know about what features lie in Data and we do some processing and find features needed?
@deevioo
@deevioo 8 жыл бұрын
What about ratio between height of a dog and the width of its head?
@newcoolvid27
@newcoolvid27 7 жыл бұрын
If you're using spyder and want a new window to show the plot, [Tools > Preferences > IPython console > Graphics > Graphics backend > Backend: Automatic] then restart Spyder.
@brahmlife
@brahmlife 6 жыл бұрын
can you have sub features of features in your decision tree algorithm?
@dzxxbj
@dzxxbj 8 жыл бұрын
Are there viedos like this tutorial's type?
@rjankie
@rjankie 8 жыл бұрын
like the way you are (story)telling about this subject. Makes it accessible for many People. looking forward to "future episodes". ;-)
@abdulrahmanalotaibiq8
@abdulrahmanalotaibiq8 8 жыл бұрын
keep up the good work. Would you talk about image classification but not the simple one that's in the tutorial, please?
@JBGordon
@JBGordon 8 жыл бұрын
+Abdulrahman Alotaibi Definitely planning on that down the road when we get to TensorFlow. Their tutorials are great btw! www.tensorflow.org/versions/r0.8/tutorials/index.html
@abdulrahmanalotaibiq8
@abdulrahmanalotaibiq8 8 жыл бұрын
Awesome and thanks for the reply. I really wanted to know how to preprocess the images before feeding them to the classifier. Every tutorial out there uses the classic MINST and I wish that use guys use something different. Thanks again and you are doing a great job.
@giantneuralnetwork
@giantneuralnetwork 8 жыл бұрын
+Abdulrahman Alotaibi I'd checkout open-cv for image preprocessing. Great idea to distort/translate/skew/scale the training images to get a better general predictor!
@diwashshrestha4996
@diwashshrestha4996 7 жыл бұрын
It great easy to understand series .we want more.
@dannyhunn6025
@dannyhunn6025 7 жыл бұрын
Couldn't you use Latitude and Longitude to find Euclidean distance?
@xsyed
@xsyed 8 жыл бұрын
Waiting for more of this kind of stuff!!
@TTarfreak
@TTarfreak 8 жыл бұрын
This is explained in such a simple and practical way.Loving this series! :)
@MrHuno92
@MrHuno92 8 жыл бұрын
Is there a good read available to elaborate on the topic or follow the tutorial?
@JBGordon
@JBGordon 8 жыл бұрын
+60SecondsTech Good question. I haven't done a write up (maybe will do in the future, that's a good idea). For an in depth treatment, Prof Andrew Ng’s course is an incredible resource: kzbin.info/www/bejne/i6vbip-YgJeWbac
@AviPars
@AviPars 6 жыл бұрын
mine doesn't overlap , is that normal?
@rajnishrajput6121
@rajnishrajput6121 7 жыл бұрын
So if i want to make a program that identify all the dogs in the world, I have to store all the data of all dogs in the world? like height, weight, speed hair etc.
@bhavykhatri2669
@bhavykhatri2669 6 жыл бұрын
His smile is so motivating.
@mycount64
@mycount64 7 жыл бұрын
simplified classifiers OK. what if feature ratio's are significant or their are sorting stations for the letters with varied release times for the letters... eh just confusing things. will the ML program figure out relationships between features if it is supervised or is it our job to figure out the relationships. Actually isn't the problem that if we have a system with 2500 features and do not know how they are significant then ml will figure it out?
@sadiqsariq8037
@sadiqsariq8037 5 жыл бұрын
what is the difference between np.random.random() and np.random.randn() ?
@pitbbe
@pitbbe 8 жыл бұрын
Awesome Series! please make more videos!
@Hieuiph
@Hieuiph 8 жыл бұрын
thanks !!!! I hope you will explain in the future the "feature engineer" technique.
@dzxxbj
@dzxxbj 8 жыл бұрын
These videos are very helpful. Through them I know how to code and understand happily. How can I pass the gap between Little Code and real world problem?Hope for topics about this:)
@fatihturgel
@fatihturgel 8 жыл бұрын
Great work! Really love your series! :)
@theburntcrumpet8371
@theburntcrumpet8371 7 жыл бұрын
I'm a bit late to the party here but I'd just like to say thanks to the Google Developer's channel for putting these videos out there.
@DragoonGalaxy7
@DragoonGalaxy7 8 жыл бұрын
what's the program you use to write the python code?
@titas3419
@titas3419 7 жыл бұрын
Sublime Text
@RM-lw2qi
@RM-lw2qi 6 жыл бұрын
What does the greyhound = 500 line actually do?
@shoun4148
@shoun4148 6 жыл бұрын
Juts makes the variable greyhound equals to a value of integer 500
@husainzafar1648
@husainzafar1648 8 жыл бұрын
I think np.random.randn is not restricted in range (-1,1). So the error wouldn't be just +/- 4%. Btw excellent videos and loving your style of explaining!!
@bimDe2024
@bimDe2024 7 жыл бұрын
Complex in easiest words, thanks a lot
@amomasi9909
@amomasi9909 5 жыл бұрын
#Hi guys. Code that works now so you can follow: import numpy as np import matplotlib.pyplot as plt greyhounds = 500 labs = 500 grey_height = 28 + 4 * np.random.randn(greyhounds) lab_height = 24 + 4 * np.random.randn(labs) plt.hist([grey_height, lab_height], stacked=True, color=['r', 'b']) plt.show
@Warri0r1992
@Warri0r1992 8 жыл бұрын
Hey Josh! I'm studying machine learning in my University since a couple of years, and i've found your tutorials very useful, altough i already know those things! The concepts are very clearly teached! Python looks really easy to understand, instead of R, for istance. Also, i'm looking for blogs or web sites to keep myself always updated on ML topics....do you have some advices? Keep it up, i can't wait for another video!
@JBGordon
@JBGordon 8 жыл бұрын
+Warri0r1992 Thanks! My favorite blog is colah.github.io - it's a pretty incredible explanation of how neural networks work, and some assorted other topics.
@TheIsrraaa
@TheIsrraaa 8 жыл бұрын
Analytics Vydhia at fb or web
@MattieCooper10000
@MattieCooper10000 7 жыл бұрын
Exactly what I needed! Thank you so Much! Love your presentation!
@stickmouse5002
@stickmouse5002 6 жыл бұрын
how does training work, my program marks an apple as an orange
@akansha.da1iiitmk.ac.inaka290
@akansha.da1iiitmk.ac.inaka290 7 жыл бұрын
Doing it on Python 3? Don't want to pause the video and write? Find the code here: github.com/akanshajainn/Machine-Learning---Google-Developers
@tekki.dev.
@tekki.dev. 5 жыл бұрын
im trying to learn two things at once here, python and machine learning, but i guess its not too hard as i already know c#,php etc... ML is also not very hard at first but gets little complicated as you go deep...
@andrescolon
@andrescolon 8 жыл бұрын
Good job on these videos!
@user-ny8xt1ui3h
@user-ny8xt1ui3h 4 жыл бұрын
Wonderful Series of ML! Someone recommends me another one? please
@MuammarElKhatib
@MuammarElKhatib 8 жыл бұрын
Very clear explanation.
@vivasjimmy
@vivasjimmy 8 жыл бұрын
we want more of these videos
@gaurav9839
@gaurav9839 5 жыл бұрын
What if I don't what is dog and I need to identity it ... My program is just a toddler and it is learning from Internet ...
@HighNorthStudios
@HighNorthStudios 8 жыл бұрын
These vids are great! Thank you and keep it up!
@SirajRaval
@SirajRaval 8 жыл бұрын
Hell yeah! If you guys like machine learning check out my new ML series on my channel.
@Cupofshake
@Cupofshake 6 жыл бұрын
The graph doesn't work, only gets this message.
@ErnestGWilsonII
@ErnestGWilsonII 7 жыл бұрын
# Import Numpy import numpy as np # Import matplotlib import matplotlib.pyplot as plt # 500 of each dog greyhounds = 500 labs = 500 # Set the dog heights +/- 4" randomly grey_height = 28 + 4 * np.random.randn(greyhounds) lab_height = 24 + 4 * np.random.randn(labs) # Plot plt.hist([grey_height, lab_height], stacked=True, color=['r', 'b']) # Launch the results in a window plt.show()
@dolomikal
@dolomikal 8 жыл бұрын
A bit light on the info here I think. Compared to the last episode.
@Unhacker
@Unhacker 5 жыл бұрын
I loved it, but my dog would prefer a squirrel detection algorithm.
@harendrasingh_22
@harendrasingh_22 6 жыл бұрын
This is an awesome series ! The best thing ever in ML :P (Well not "the best" , but yeah ! ) !
@JeffWeakley
@JeffWeakley 8 жыл бұрын
Big Fan. thanks Josh. Much appreciated.
@JeromeEtienne
@JeromeEtienne 8 жыл бұрын
So clear! Thanks
@TheTruthFadeswithTime28
@TheTruthFadeswithTime28 6 жыл бұрын
why does my bar graph look way worse aesthetically than yours?
@andrecastro1179
@andrecastro1179 6 жыл бұрын
mine too, probably because of his magic Mac.
@avinashravi4606
@avinashravi4606 6 жыл бұрын
where i can Learn deeper about ML algorithm with statistics
@fpspsyduck
@fpspsyduck 8 жыл бұрын
great video!
@vladvlog8261
@vladvlog8261 8 жыл бұрын
Thanks for the video. Really appreciate it!
@jinxblaze
@jinxblaze 7 жыл бұрын
Wouldn't Latitude and Longitude give you accurate distances by some very simple calculations ?
@riverland0072
@riverland0072 7 жыл бұрын
yes, but who has time for simple calculations when we have simpler distances...now you just made me try to remember log and lat maths from high school..it was not that simple
@egor.okhterov
@egor.okhterov 8 жыл бұрын
Amazing. I understand everything perfectly :)
@twmicrosheep
@twmicrosheep 8 жыл бұрын
Keep up the great work!
@MamunSuper
@MamunSuper 8 жыл бұрын
awesome lectures...)
@JackalovichMokov
@JackalovichMokov 7 жыл бұрын
has anyone else noticed that he never blinks
@editmergedx6541
@editmergedx6541 6 жыл бұрын
5:00
@sapnaroy6373
@sapnaroy6373 6 жыл бұрын
At 2:16
@Dynamite_mohit
@Dynamite_mohit 4 жыл бұрын
Thankyou
@ElVerdaderoAbejorro
@ElVerdaderoAbejorro 7 жыл бұрын
I have created a github repo with all of the code for all of the recipes of this series. I've used Python3 for all recipes. I've also updated all of the libraries and have added some things to the code here and there. Check it out: github.com/TheCoinTosser/MachineLearningGoogleSeries
@dude2260
@dude2260 7 жыл бұрын
when the max height is 28 + 4 where does 35 comes from
@jeremyheminger6882
@jeremyheminger6882 7 жыл бұрын
Yeah, I agree, its sketchy. I fed it print(10 + 4 * np.random.randn(10) + 4) to generate numbers only above 10 and less 18 but I occasionally am getting numbers like 9.6... and 18.5... [ 9.65793498 13.18266908 8.06937322 10.59406851 11.29406986 11.14891777 11.93107746 13.25606161 18.58717831 8.54857054] How does this function work?
@akarshrastogi3682
@akarshrastogi3682 7 жыл бұрын
The decision tree that he follows to decide when and how often he SMILES creeps me out..! 1:06
@harshseth3231
@harshseth3231 8 жыл бұрын
Nice Tshirt ! :P
@State_exam_preparation
@State_exam_preparation 4 жыл бұрын
Awesome👏✊👍
@ReverseMe
@ReverseMe 6 жыл бұрын
better remove inches
@denisedias7796
@denisedias7796 6 жыл бұрын
Thank you
@yeshwinhk
@yeshwinhk 7 жыл бұрын
This guy is definitely a robot
@husker3345
@husker3345 8 жыл бұрын
Awesome, thanks :)
@breddowen1801
@breddowen1801 8 жыл бұрын
Thank you a lot!!!!!!!
@SergioArroyoSailing
@SergioArroyoSailing 8 жыл бұрын
Awesome 😀😀!!!
@minigam3s479
@minigam3s479 6 жыл бұрын
I wish i could look so happy ^^
@samirfersobe5882
@samirfersobe5882 8 жыл бұрын
Is this heaven?
Let’s Write a Pipeline - Machine Learning Recipes #4
7:54
Google for Developers
Рет қаралды 506 М.
黑天使只对C罗有感觉#short #angel #clown
00:39
Super Beauty team
Рет қаралды 36 МЛН
My scorpion was taken away from me 😢
00:55
TyphoonFast 5
Рет қаралды 2,7 МЛН
Visualizing a Decision Tree - Machine Learning Recipes #2
6:42
Google for Developers
Рет қаралды 969 М.
Feature Engineering Secret From A Kaggle Grandmaster
22:23
Mario Filho English
Рет қаралды 41 М.
Transformers (how LLMs work) explained visually | DL5
27:14
3Blue1Brown
Рет қаралды 4,1 МЛН
But what is the Central Limit Theorem?
31:15
3Blue1Brown
Рет қаралды 3,7 МЛН
Getting Started with Weka - Machine Learning Recipes #10
9:24
Google for Developers
Рет қаралды 222 М.
MarI/O - Machine Learning for Video Games
5:58
SethBling
Рет қаралды 11 МЛН
Hello World - Machine Learning Recipes #1
6:53
Google for Developers
Рет қаралды 2,6 МЛН
Intro to Feature Engineering with TensorFlow - Machine Learning Recipes #9
7:38
Google for Developers
Рет қаралды 179 М.
黑天使只对C罗有感觉#short #angel #clown
00:39
Super Beauty team
Рет қаралды 36 МЛН