Gram-Schmidt Orthogonalization

  Рет қаралды 35,724

MIT OpenCourseWare

MIT OpenCourseWare

Күн бұрын

Пікірлер
@monatoshbarman11
@monatoshbarman11 5 ай бұрын
The ending explanation about how the entries in R can be seen/found in previous calculations was very helpful.. Thank you so much.
@Y2B123
@Y2B123 2 жыл бұрын
These videos are incredibly helpful in refreshing those ideas. It makes these concepts really stick in my mind.
@dinuthomas4531
@dinuthomas4531 3 жыл бұрын
Excellent explanation and conclusion on QR relations
@amratia99
@amratia99 6 жыл бұрын
Well explained ! But the professor said in the lecture that : C = c - (aTc/aTa)*a - (bTc/bTb)*b This will give me another answer which is wrong .. but I don't know why .. If we use this formula that means that we want a vector prep to a .. then take this vector and make it prep to b .. don't know why didn't work
@rooftop1510
@rooftop1510 6 жыл бұрын
the video uses the new vector a and b! if u use the new vector aTa and bTb will be 1.
@sudharshantr8757
@sudharshantr8757 Жыл бұрын
since the short answer is already given, here is a deeper one. Let p and q be 2 dimensional vectors which are independent (but not orthogonal!). We know that p, q span the entire 2d space. Suppose, we want to express another 2d vector r = ap + bq. Can we say a = rTp/pTp and b = rTq/qTq? Draw it in a piece of paper and you will see we can't! we can write is such a fashion only if p and q are perpendicular.
@johannesmariomeissner7262
@johannesmariomeissner7262 4 жыл бұрын
2:21 "When you do the projection of a vector onto another, you have to divide by the length of in this case q1." Wouldn't it be dividing by the length squared? Or in other words, q1 dot q1? That's what the formula for Gram-Schmidt tells us: q2' = (q1 q1T b) / (q1T q1) where q1T q1 happens to be the length squared of q1.
@josephlevine2836
@josephlevine2836 4 жыл бұрын
You almost got it! For any vector a, aT a = |a|^2. In the case where the vector is q it is defined to have length 1. qT q = 1^2 = 1 An example might help. Look at the second term in Gram-Schmidt: a (aT b) / (aT a) = a(aT b) / |a|^2 = a/|a| * aT/|a| b but a/|a| = q1 and aT/|a| = q1T so a (aT b) / (aT a) = q1 (q1T b) I used the parentheses in the final line to show the meaning: project b along the direction of a to get a scalar. Multiply that by the direction of a. Hope this helps!
@user-qj6hl5xb8q
@user-qj6hl5xb8q 3 жыл бұрын
Around 7:40, how do we go from 2 3 0 in the second column of R to b=2q1 + 3q2?
@davidondev7382
@davidondev7382 Жыл бұрын
You might have found it out by yourself, but what she was doing is checking if A=QR, where Q came from the Gram-Schmidt, and R came from observation, (but she explained a general way to get R at the end). For b=2q1 + 3q2, it checked the second column of A (which is b) = the matrix Q multiply the second column of R (which is [2, 3, 0]), so it's b = R_{12}q_1 + R_{22}q_2 + R_{32}q_3. Hope this would be useful.
@cheekyiscool
@cheekyiscool 5 жыл бұрын
If you cannot follow the formula used here, I'd recommend going through this intro first: kzbin.info/www/bejne/qHnSn5-qe5xqsKs (Gram-Schmidt process by Khan Academy)
@iharsh386
@iharsh386 Жыл бұрын
thanks man, that really helps
@matheuscardoso1110
@matheuscardoso1110 5 жыл бұрын
great great video. thank you Ana!
@quirkyquester
@quirkyquester 4 жыл бұрын
great eg, thank you Ana!
@tanyabarnwal2061
@tanyabarnwal2061 6 жыл бұрын
Excellent explanation
@AbdullahArshad-u2w
@AbdullahArshad-u2w 2 ай бұрын
Good understanding for R
@AnupKumar-wk8ed
@AnupKumar-wk8ed 6 жыл бұрын
You are awesome!
@KG16888
@KG16888 3 жыл бұрын
very clear!
@thedailyepochs338
@thedailyepochs338 4 жыл бұрын
good one ana
@yetaowu2658
@yetaowu2658 5 жыл бұрын
great!
@uffzymoron2407
@uffzymoron2407 Жыл бұрын
only she can fix me
@rickshawty
@rickshawty 8 ай бұрын
17. Orthogonal Matrices and Gram-Schmidt
49:10
MIT OpenCourseWare
Рет қаралды 223 М.
Linear Algebra: Gram-Schmidt
13:53
Center of Math
Рет қаралды 108 М.
When you have a very capricious child 😂😘👍
00:16
Like Asiya
Рет қаралды 18 МЛН
Cat mode and a glass of water #family #humor #fun
00:22
Kotiki_Z
Рет қаралды 42 МЛН
Мен атып көрмегенмін ! | Qalam | 5 серия
25:41
LU Decomposition
9:35
MIT OpenCourseWare
Рет қаралды 137 М.
Gram-Schmidt Orthogonalization
6:37
Dan Gries
Рет қаралды 53 М.
MATH426: Householder QR
15:10
Toby Driscoll
Рет қаралды 70 М.
21. Eigenvalues and Eigenvectors
51:23
MIT OpenCourseWare
Рет қаралды 663 М.
Modified Gram-Schmidt part 1
9:17
Robert M. Corless
Рет қаралды 6 М.
What the 1869 MIT Entrance Exam Reveals About Math Today
13:51
polymathematic
Рет қаралды 65 М.
Gram-Schmidt Orthogonalization (Proof and Example) | Linear Algebra
15:21
18. Properties of Determinants
49:12
MIT OpenCourseWare
Рет қаралды 414 М.
The Gram-Schmidt Process
10:07
Professor Dave Explains
Рет қаралды 366 М.
When you have a very capricious child 😂😘👍
00:16
Like Asiya
Рет қаралды 18 МЛН