LU Decomposition

  Рет қаралды 137,871

MIT OpenCourseWare

MIT OpenCourseWare

Күн бұрын

Пікірлер: 83
@moon-ia2068
@moon-ia2068 Жыл бұрын
Ben really did an amazing job I have been watching videos of the LU decomposition for 2 hours and your explanation is the best so far
@김승환-g3c
@김승환-g3c 4 жыл бұрын
Thank you I can easily understand LU decomposition by following your process in a timely manner
@lugia8888
@lugia8888 10 ай бұрын
No you dont
@김승환-g3c
@김승환-g3c 10 ай бұрын
Nah @@lugia8888
@instinx9154
@instinx9154 6 ай бұрын
@@lugia8888 dawg why you so salty lol
@stevesgle4025
@stevesgle4025 2 жыл бұрын
absolutely enjoying it. understood the concept the moment i finished the video!
@wuchinen
@wuchinen Жыл бұрын
I appreciate your help. Now I have a better understanding of matrices multiplication through your precise description.
@harshavardhanlakhinana5280
@harshavardhanlakhinana5280 7 ай бұрын
Dude you really nailed it!! First I didnot understand the actual procedure from lecture not I get it and I was wondering why L and U decomposition would take less amount of steps to compute and now I have my answer thanks to your clear explaination
@mind-blowing_tumbleweed
@mind-blowing_tumbleweed Жыл бұрын
Good review. I remember I was puzzled why L doesn't have minuses when it eliminated numbers.
@siyuanGong-j4f
@siyuanGong-j4f 9 ай бұрын
Some one maybe explain to me why " you can't find LU decomposition if you have to do a row exchange in elimination"(4:08) it seems to me that it is because in this problem we happen to have 0 in the right of a in row 2, if a is zero, then row two is dependent row. Without full pivot we can't do LU decomposition. But in other situation, even if we have row exchange in elimination step, we could still find LU decomposition but not in a straight forward way. Someone please help!
@geekaffairs6475
@geekaffairs6475 6 жыл бұрын
Ben, you explained nicely..
@zakariyemohamudabdi962
@zakariyemohamudabdi962 2 жыл бұрын
Am watching now thanks to Instructor Harris
@Hobbit183
@Hobbit183 6 жыл бұрын
these videos are gold :)
@vipulsharma6761
@vipulsharma6761 Ай бұрын
Very Smooth! Thanks for clearing this up!
@mohithjagalmohan
@mohithjagalmohan 4 жыл бұрын
He's pretty good. Thank you so much, Ben :) :)
@samsworking7604
@samsworking7604 Жыл бұрын
Wait, is it just me who's finding his LU doesn't end up the original A? I was following all of the steps correctly until the last part where the LU is not equal to A.... Anyone else?
@rajavignesh7216
@rajavignesh7216 Жыл бұрын
Yeah bro same in matrix U (u33 = 0 ) not a-b ,I used a different method got u33 as zero and A = LU
@anuj7876
@anuj7876 Жыл бұрын
U done it beautifully in L 21. There will be -a not just a 😅 8:40
@bhushandatre1508
@bhushandatre1508 4 ай бұрын
i noticed it too it should be -a and not 0😁
@picklerick8844
@picklerick8844 4 жыл бұрын
Challenge: Take a shot everytime he says "Good".
@mohdmohtashim9841
@mohdmohtashim9841 Жыл бұрын
11 shots...
@mobyokelly52
@mobyokelly52 3 жыл бұрын
Thank you very much, definitely useful for me!
@rajajaladurgam
@rajajaladurgam 3 жыл бұрын
please explain the last comment you have made regarding permutation.. why if permutation does not allow LU decomposition
@carlphilip4393
@carlphilip4393 2 жыл бұрын
because if we would do permutations the resulting matricies wouldnt be triangular anymore. ->triangular matricies are our goal (i know the comment is old, its just for anyone having the same question)
@StephanyMaraca
@StephanyMaraca Жыл бұрын
Thank you man, it was a really clear explanation
@riteshprasadsingh6029
@riteshprasadsingh6029 2 жыл бұрын
why a-b can be zero? Suppose a = 1 and b = 1, then the pivot will be zero
@logancastaway2064
@logancastaway2064 Жыл бұрын
a was assumed to be zero because it is required to be used as a pivot in order to obtain u. i see what you mean by your question because a-b is the next natural pivot location, but it isn’t necessary for a-b to actually be a pivot since we aren’t eliminating anything underneath of its location. we can still construct an upper triangular matrix even if none of the elements on the diagonal are valid pivots. all that matters is that there are zeros below the diagonal. i know this is 8 months late but this is for anyone who read your comment and is still curious.
@then-go
@then-go 8 ай бұрын
@@logancastaway2064 I really curious about that and I have searched comments to know that. Thank you so much!!
@anandjain717
@anandjain717 4 жыл бұрын
Why we not take into account the row exchanges in LU decomposition. As we know that the elementary matrix corresponding to it is invertible(equal to its transpose). So why row exchanges are not considered?
@Abhi-qi6wm
@Abhi-qi6wm 4 жыл бұрын
But why would you want to exchange rows in this problem? All pivot positions are already non-zero.
@gaboqv
@gaboqv 3 жыл бұрын
thats a plu decomposition
@laytion4585
@laytion4585 2 жыл бұрын
Thank you! I think he explained it very well
@MrSazid1
@MrSazid1 4 жыл бұрын
If we need to change the pivot can we not just do a permutation and added to the elimination
@Upgradezz
@Upgradezz 3 жыл бұрын
Then you won't get a LU decomposition.
@ashutoshtiwari4398
@ashutoshtiwari4398 6 жыл бұрын
Can anyone explain me what the last part meant? That a-b can be zero and singular matrices can have LU decomposition.
@yuchenzhao6411
@yuchenzhao6411 5 жыл бұрын
Singular matrices can have U, they just can’t be eliminated to I.
@alexcosta15178
@alexcosta15178 2 жыл бұрын
But the U matrix contains pivots and pivots can't be zero, so (a - b) can't be zero. Right?
@zionjohnson8114
@zionjohnson8114 Жыл бұрын
idk
@pepehimovic3135
@pepehimovic3135 2 жыл бұрын
1) Check that your solution is valid. Check that LU gives you A. Just like with checking solutions of differential equations. 2) the a-b pivot in matrix U can be 0, because we don’t have to do a row exchange to get U. That’s the only time when we can’t do LU decomposition. In particular, singular matrices can have LU decompositions. The 2nd point makes no sense to me.
@JoseSilva-rb1ym
@JoseSilva-rb1ym 2 жыл бұрын
The second point is true enough, up to a certain point. You can't perform an LU decomposition for some matrix A which needs a row exchange; instead, you have to reorder the matrix A into some other matrix PA (by means of a permutation matrix) such that PA can be factored into LU. Singular matrices can have LU decompositions; in fact, singular matrices can have multiple LU decompositions.
@davidcruz3400
@davidcruz3400 Жыл бұрын
Very Helpful! Quick and Clear!
@jeffreylin1245
@jeffreylin1245 Жыл бұрын
Singular matrices are matrices that doesn't have inverse.
@一億円が欲しい
@一億円が欲しい 4 жыл бұрын
Wait... as the second row is divided by b/a which means b/a is not zero, that leads to a≠0 and b≠0...
@xiaominsong
@xiaominsong 4 жыл бұрын
second row times b/a, not divided by b/a
@흠냐링-i4y
@흠냐링-i4y 4 жыл бұрын
Is there any reason why the sequence is always E32->E31->E21? I guess unless it will be hard to compute L=E21 -I × E31 -I × E32 -I , right?
@thomassun3046
@thomassun3046 4 жыл бұрын
because it is elimination, it is about row operations,so the matrix must be on the left of the A matrix, coz it is step by step, so it must be this order
@Kenjiru
@Kenjiru 4 жыл бұрын
There is a good reason why it's that exact order. Having E32 x E31 x E21 x A = U, in order to end up only with A on the left side, we need to multiple on the left with a matrix that would result in I x A = L x U. The definition of I is: I = A x A-1 or I = A-1 x A To get I from E32 x E31 x E21 we need to multiply it on the left with the inverse of each matrix (in reverse order). E21-1 x E31-1 x E32-1 x E32 x E31 x E21 = I, because E32-1 x E32 = I, and then E31-1 x I x E31 = I, and then E21-1 x I x E21 = I
@ixine-fx3wd
@ixine-fx3wd 2 жыл бұрын
Even E31->E32->E21 gives the same L in this case, just need to follow order of inverses to be multiplied(E21-1->E32-1->E31-1). Not sure if it's limited to this question only.
@allenyang5829
@allenyang5829 4 ай бұрын
Thank you, you explain very well.
@cobaroja3529
@cobaroja3529 3 ай бұрын
να σαι χαιρονται οι γονεις σου αγοραρα μου
@biscuitsofdeath
@biscuitsofdeath Жыл бұрын
I still don't get it. I think the e matrices are tripping me up.
@TheRojo387
@TheRojo387 Жыл бұрын
It seems that he left-multiplied each successive matrix by the eliminators, rather than right-multiplying!
@woka1875
@woka1875 3 ай бұрын
why no corner for the bracket
@hayin2041
@hayin2041 2 жыл бұрын
What about the case when we need row interchange?
@pinazo07
@pinazo07 Жыл бұрын
Wouldn't it be necessary to highlight that "a - b" must be non-zero?
@FriggnH8ters
@FriggnH8ters 5 ай бұрын
He mentions it at the very end of the video. I believe it is alright for a-b to be 0 since the location of the entry does not require a row exchange which would prevent us from creating an LU decomposition
@skyatoro
@skyatoro Жыл бұрын
I miss blackboards. They’re the OG boards
@andrewgreazel7007
@andrewgreazel7007 2 жыл бұрын
How do you get -b/a for Esub32 in the third elimination matrix?
@ElectricTeaCup
@ElectricTeaCup 2 жыл бұрын
We want to turn the b in row 3 to 0 using the pivot in row 2. In order to do this, the pivot, namely a needs to be first divided by a and then multiplied by b followed by a subtraction from row 3. Translating this into matrix form is E_32.
@yiyu9519
@yiyu9519 3 жыл бұрын
love this course
@dylendye7410
@dylendye7410 Жыл бұрын
Thanks this will be huge help
@luislopez-tx4tl
@luislopez-tx4tl Жыл бұрын
i love his voice
@MANGALAMPALLIVMSTEJAS
@MANGALAMPALLIVMSTEJAS Жыл бұрын
You're BEN
@thomassun3046
@thomassun3046 4 жыл бұрын
From professor Strang, when the pivot is ZERO, it can be multiplied by a permutation matrix, to change the the row, so PA=LU, it should be ok, why a =0 is not discussed?
@Pdvil
@Pdvil 4 жыл бұрын
Check the next lesson. ;)
@None0fY0urConcern
@None0fY0urConcern 10 ай бұрын
omnitrix waiting for you mate
@lancelofjohn6995
@lancelofjohn6995 3 жыл бұрын
Thanks for your video
@dylendye7410
@dylendye7410 Жыл бұрын
Hey can I get into MIT?
@mitocw
@mitocw Жыл бұрын
See mitadmissions.org/ for info.
@fernandoacuna4650
@fernandoacuna4650 2 жыл бұрын
I liked this one.
@nesecanakc4395
@nesecanakc4395 Ай бұрын
Alumination
@skushagra
@skushagra 11 ай бұрын
this is great
@베타-z7f
@베타-z7f 6 жыл бұрын
I think a=0 b=0 can be the solution because A = IA is also LU decomposition
@krishnkantswarnkar4735
@krishnkantswarnkar4735 5 жыл бұрын
No it can't be. You essentially said L=I & U=A, which can not be true, as you need to perform some set of elementary operations to reach A (as shown in the video). Hope it was helpful!
@endogeneticgenetics
@endogeneticgenetics 5 жыл бұрын
Ah, good point. Technically, if a & b = 0 -> A=U & L=I, so A=IA is a solution.
@ath216
@ath216 5 жыл бұрын
What you said is called the "trivial" solution, matrix A should always be equal to IA which is also equal to AI. and you can call this what ever you want, not only LU. I guess by now you have passed the course ! congrats =)
@pepehimovic3135
@pepehimovic3135 2 жыл бұрын
@@endogeneticgenetics a = b = 0 has nothing to do with whether A = IA holds or not. A = IA is always true.
@esmondadjei
@esmondadjei Жыл бұрын
Hello Ben
@thangbui6383
@thangbui6383 2 жыл бұрын
Thanks. liked.
@12121921
@12121921 2 жыл бұрын
nicely
@emre-terim
@emre-terim 24 күн бұрын
sevdim seni
@vinyltherapy9410
@vinyltherapy9410 2 жыл бұрын
Güd
4. Factorization into A = LU
48:05
MIT OpenCourseWare
Рет қаралды 738 М.
LU decomposition - An Example Calculation
8:48
The Bright Side of Mathematics
Рет қаралды 394 М.
Support each other🤝
00:31
ISSEI / いっせい
Рет қаралды 81 МЛН
Правильный подход к детям
00:18
Beatrise
Рет қаралды 11 МЛН
小丑教训坏蛋 #小丑 #天使 #shorts
00:49
好人小丑
Рет қаралды 54 МЛН
What the 1869 MIT Entrance Exam Reveals About Math Today
13:51
polymathematic
Рет қаралды 65 М.
Gram-Schmidt Orthogonalization
10:00
MIT OpenCourseWare
Рет қаралды 35 М.
L U = P A -Matrix Decomposition/Factoring
19:52
Prime Newtons
Рет қаралды 39 М.
7 Outside The Box Puzzles
12:16
MindYourDecisions
Рет қаралды 147 М.
Singular Value Decomposition (the SVD)
14:11
MIT OpenCourseWare
Рет қаралды 630 М.
Subspaces of Three Dimensional Space
14:45
MIT OpenCourseWare
Рет қаралды 62 М.
LU-Decomposition of a Matrix Explained | Linear Algebra
21:24
Wrath of Math
Рет қаралды 4,5 М.
5. Transposes, Permutations, Spaces R^n
47:42
MIT OpenCourseWare
Рет қаралды 963 М.
Elimination with Matrices
10:18
MIT OpenCourseWare
Рет қаралды 68 М.
Support each other🤝
00:31
ISSEI / いっせい
Рет қаралды 81 МЛН